基于事件驱动控制的线性不确定系统一致性  被引量:2

Event-triggered Control for Consensus of Linear Uncertain Systems

在线阅读下载全文

作  者:柯亚唯 蒲楠楠 KE Ya-wei;PU Nan-nan(Huadian Electrical Power Research Institute Co.Ltd, Hangzhou 310030, China;China Water Resources Pearl River Planning Surveying&Designing Co.Ltd. zhejiang branch, Hangzhou 310030, China)

机构地区:[1]华电电力科学研究院有限公司,杭州310030 [2]中水珠江规划勘测设计有限公司浙江分公司,杭州310030

出  处:《控制工程》2019年第2期302-307,共6页Control Engineering of China

摘  要:基于分布式事件驱动控制策略,研究了一般线性不确定多智能体系统的一致性问题。模型设计时,同时考虑了系统状态不确定,输入不确定和外部扰动等多重因素的影响,并依此设计了基于事件驱动的控制算法和驱动条件。利用李雅普诺夫稳定性理论证明了系统最终可以实现有界一致性,并排除了Zeno现象。最后,通过数值仿真验证了理论结果。具体结构为:基于一类具有状态不确定和输入不确定的系统,设计分布式事件驱动算法,同时还考虑了环境扰动的影响;进一步对于每个智能体,采用代数Riccati方程给出了分布式事件驱动条件。利用Lyapunov稳定性理论证明了系统渐进一致性的实现。最后,以一类飞行器系统为例仿真验证了方法的有效性。In this paper, a new kind of distributed event-triggered control strategy is proposed for the consensus of general linear uncertain multi-agent systems. By considering the state uncertainty, input uncertainty and external disturbance in the control model, the event-based control algorithm and event-triggered condition are designed. Using Lyapunov stability theory, it is proved that the bounded consensus can be achieved for all agents. Finally, a numerical example is given to verify the theoretical result. The specific structure is as follows:for a class of systems with state uncertainty and input uncertainty, a distributed event-driven control algorithm is designed. Furthermore, for each agent, the algebraic Riccati equation is used to derive the distributed event-driven conditions. It is proven that the asymptotical consensus can be achieved by Lyapunov stability theory. Finally, a class of aircraft systems are taken as an example to demonstrate the effectiveness of the proposed method.

关 键 词:线性不确定系统 事件驱动控制 一致性 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象