负荷数据不完全的配电网降损优化方法  被引量:15

Optimization Method for Power Loss Reduction of Distribution Network Based on Incomplete Load Data

在线阅读下载全文

作  者:唐海国 龚汉阳 冷华[2] 朱吉然 毛涛[3] TANG Haiguo;GONG Hanyang;LENG Hua;ZHU Jiran;MAO Tao(Electric Power Research Institute,State Grid Hunan Electric Power Company,Changsha 410007,China;State Grid Hunan Electric Power Company,Changsha 410004,China;School of Electrical and Mechanical Engineering,Wuhan Donghu University,Wuhan 430074,China)

机构地区:[1]国网湖南省电力公司电力科学研究院,长沙410007 [2]国网湖南省电力公司,长沙410004 [3]武汉东湖学院机电工程学院,武汉430074

出  处:《电力系统及其自动化学报》2019年第3期128-132,共5页Proceedings of the CSU-EPSA

摘  要:为减小配电网网损,本文对不完全配电网负荷数据情况下的多种类型分布式电源出力优化方法进行了研究。首先,依据配电网拓扑结构、支路参数和部分有监测装置节点的负荷数据,计算出其他节点的负荷功率;其次,以多种类型分布式电源的出力为决策变量,以网络节点电压和支路电流不越限为约束条件,以配电网线路总体损耗最小为目标建立优化模型,采用罚函数方法处理约束条件,结合优化目标函数确定适应度函数;最后,采用粒子群优化算法进行优化模型求解。通过某10 kV馈线中的仿真算例验证了所提出方法的正确性和有效性。To reduce the distribution network power loss,the optimization method for the output of multi-type distributed generations(DGs)is studied under the condition of incomplete load data of distribution network.First,the load powers of nodes without inspection are calculated according to the topology of distribution network,the parameters of each branch,and the load data of nodes under inspection.Then,an optimization model to minimize the total line loss of distribution network is built based on the decision variables of the output of multi-type DGs and the constraints of node voltages and branch currents that are not over limited;the constraints are processed using the penalty function method,and the fitness function is determined by combining the optimization objective function.Finally,the optimization model is solved by the particle swarm optimization(PSO)algorithm.The correctness and effectiveness of the proposed method are verified by simulation results of a 10 kV feeder line.

关 键 词:配电网网损 分布式电源 粒子群优化 不完全信息 

分 类 号:TM72[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象