检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨宏宇[1] 程放 YANG Hong-yu;CHENG Fang(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)
机构地区:[1]中国民航大学计算机科学与技术学院,天津300300
出 处:《北京理工大学学报》2019年第3期304-310,共7页Transactions of Beijing Institute of Technology
基 金:国家科技重大专项项目(2012ZX03002002);国家自然科学基金资助项目(U1833107);中国民航科技项目(MHRD201009;MHRD201205);中央高校基本科研业务费专项项目(3122014D033)
摘 要:针对现有无线传感器网络恶意节点检测方法效率较低的不足,提出一种基于增强低功耗自适应集簇分层(enhanced low energy adaptive clustering hierarchy,enhanced LEACH)路由协议信誉机制的恶意节点检测(malicious node detection based on enhanced LEACH with reputation,MNDELR)模型.在无线传感器网络中使用增强LEACH路由协议选取簇首节点,其余节点选择对应簇首形成各簇集群并确定网络数据包传递路径.节点在数据包内添加节点编号、信誉评价等信息并按传递路径将数据包发送至汇聚节点;汇聚节点解析获取数据包内节点编号并与源节点编号比较判定,形成可疑节点列表;计算节点信誉值并与阈值比较判定网络中的恶意节点.实验结果表明,与其他方法相比,MNDELR模型在无线传感器网络中对恶意节点的检测效果较为显著.To solve the efficiency problem of the existing malicious node detection methods in wireless sensor networks (WSN), a malicious node detection model was proposed based on enhanced low energy adaptive clustering hierarchy (LEACH) routing protocol with reputation (MNDELR). Firstly, in wireless sensor network, the enhanced LEACH routing protocol was used to select the cluster-head nodes and make other nodes to be corresponding cluster-head nodes to form the clusters and determine the packets delivery paths in the network. Then, some information, including the node numbers and the reputation evaluation, were added to the data packets of nodes, and the data packets were sent to the sink node according to the delivery paths. The node numbers in the packets were parsed and compared with the source node numbers in the convergent node to form a list of suspicious nodes. Finally, the reputation values of the nodes were calculated and compared with the threshold to determine the malicious nodes in the network. The experiment results show that, compared with other methods, MNDELR model can detect malicious nodes in WSN more effectively.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.152