基于多融合态的低密度三维模型信息隐藏算法  被引量:5

Low-density 3D model information hiding algorithm based on multple fusion states

在线阅读下载全文

作  者:任帅[1] 徐振超 王震 贺媛 张弢[2] 苏东旭 慕德俊[3] REN Shuai;XU Zhenchao;WANG Zhen;HE Yuan;ZHANG Tao;SU Dongxu;MU Dejun(School of Information Engineering,Chang an University,Xi'an Shaanxi 710064,China;School of Electronic and Control Engineering,Chang an University,Xi'an Shaanxi 710064,China;College of Automation,Northwestern Polytechnical University,Xi'an Shaanxi 710072,China)

机构地区:[1]长安大学信息工程学院,西安710064 [2]长安大学电子与控制工程学院,西安710064 [3]西北工业大学自动化学院,西安710072

出  处:《计算机应用》2019年第4期1100-1105,共6页journal of Computer Applications

基  金:国家自然科学基金资助项目(61702050)~~

摘  要:针对现有三维模型信息隐藏算法无法有效抵抗不均匀压缩的问题,提出一种基于多融合态的多载体低密度的信息隐藏算法。首先通过平移和缩放对多个三维模型进行定位、定向及定型;其次对三维模型进行不同角度的旋转,以中心点作为融合点进行融合,得到多个融合态;再次,利用局部高度和Mean Shift聚类分析算法对融合态模型的顶点进行能量划分,得到不同能量的顶点;最后,通过修改顶点坐标的方法将经过Arnold置乱变化的秘密信息快速隐藏于多个融合态和三维模型中。实验结果表明,该算法对抵御不均匀压缩的攻击有很好的鲁棒性且具有很高的不可见性。Aiming at the problem that the existing 3 D model information hiding algorithms cannot effectively resist uneven compression,a multi-carrier low-density information hiding algorithm based on multiple fusion states was proposed.Firstly,multiple 3 D models were positioned,oriented and stereotyped by translation and scaling.Secondly,the 3 D models were rotated at different angles and merged by using the center point as merging point to obtain multiple fusion states.Thirdly,local height and Mean Shift clustering analysis were used to divide the energy of the vertices of the fusion state model,obtaining the vertices with different energies.Finally,by changing the vertex coordinates,the secret information changed by Arnold scrambling was quickly hidden in multiple fusion states and 3 D models.Experimental results show that the proposed algorithm is robust against uneven compression attacks and has high invisibility.

关 键 词:信息隐藏 三维模型 融合态 局部高度理论 Mean Shift聚类分析 

分 类 号:TP309.2[自动化与计算机技术—计算机系统结构] TP301.6[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象