以脑电图子序列特征向量为节点的脑网络分析方法  

Brain network analysis method based on feature vector of electroencephalograph subsequence

在线阅读下载全文

作  者:杨雄 姚蓉 杨鹏飞 王哲 李海芳 YANG Xiong;YAO Rong;YANG Pengfei;WANG Zhe;LI Haifang(College of Information and Computer,Taiyuan University of Technology,Taiyuan Shanxi 030024,China)

机构地区:[1]太原理工大学信息与计算机学院,太原030024

出  处:《计算机应用》2019年第4期1224-1228,共5页journal of Computer Applications

基  金:国家自然科学基金资助项目(1472270)~~

摘  要:工作记忆复杂网络分析方法大多数是以通道作为节点从空间的角度进行分析,很少有从时间角度对通道网络进行分析。针对脑电图(EEG)的高时间分辨率特性及时间序列分段较难的缺陷,提出一种从时间角度构建网络并对网络进行分析的方法。首先,利用微状态将每个通道的EEG信号划分成不同的子段作为网络的节点;其次,在子段中提取并选择有效特征作为子段的特征,计算子段特征向量之间的相关性构建通道时间序列复杂网络;最后,对所构建网络的属性及相似性进行分析,并在精神分裂症患者EEG数据上进行验证。实验结果表明,通过所提方法对精神分裂症数据进行分析,能够充分利用EEG信号的时间特性从时间角度深入了解精神分裂症病人工作记忆中构建的时间序列通道网络的特点,解释了精神分裂症患者与正常人的显著性差异。Working memory complex network analysis methods mostly use channels as nodes to analyze from the perspective of space,while rarely analyze channel networks from the perspective of time.Focused on the high time resolution characteristics of ElectroEncephaloGraph(EEG)and the difficulty of time series segmentation,a method of constructing and analyzing network from the time perspective was proposed.Firstly,the microstate was used to divide EEG signal of each channel into different sub-segments as nodes of the network.Secondly,the effective features in the sub-segments were extracted and selected as the sub-segment effective features,and the correlation between sub-segment feature vectors was calculated to construct channel time sequence complex network.Finally,the attributes and similarity analysis of the constructed network were analyzed and verified on the schizophrenic EEG data.The experimental results show that the analysis of schizophrenia data by the proposed method can make full use of the time characteristics of EEG signals to understand the characteristics of time series channel network constructed in working memory of patients with schizophrenia from a time perspective,and explain the significant differences between patients and normals.

关 键 词:脑电图 复杂网络 工作记忆 精神分裂症 微状态 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象