检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王强[1] 李迎光[1] 郝小忠[1] 刘长青[1] 陈海吉 WANG Qiang;LI Yingguang;HAO Xiaozhong;LIU Changqing;CHEN Haiji(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出 处:《航空制造技术》2019年第7期49-53,共5页Aeronautical Manufacturing Technology
基 金:2015年国家重大专项(2015ZX04001002)
摘 要:预测刀具寿命对保证零件质量和控制加工成本意义重大,但刀具磨损过程复杂多变,刀具剩余寿命受工况影响难以准确预测。针对以上问题,提出了一种基于在线学习的刀具寿命动态预测方法,以长短时记忆网络为基础模型,融合在线学习模块,使得模型能够在加工过程中自动更新参数,实现变工况下刀具寿命的精确预测。进行了铣削加工试验,结果表明,刀具寿命动态预测方法可以有效提升刀具寿命预测精度。The prediction of tool life is of great significance to ensure the quality of parts and control the cost of machining. However, the tool wear process is complex and changeable, and it is difficult to accurately predict the residual life of the cutting tools affected by machining conditions. To solve the above problems, this paper presents a dynamic prediction method of tool life based on online learning. Using long-short term memory as base model and integrating the online learning module, the final model can automatically update the parameters during the machining process, and the accurate prediction of tool life under variable working conditions can be realized. The milling experiment was carried out, and the experimental results show that the dynamic prediction method of tool life can effectively improve the precision of tool life prediction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166