Review and prospect of NiCo_(2)O_(4)-based composite materials for supercapacitor electrodes  被引量:15

在线阅读下载全文

作  者:Yanmei Li Xiao Han Tingfeng Yi Yanbing He Xifei Li 

机构地区:[1]School of Chemistry and Chemical Engineering, Anhui University of Technology [2]School of Resources and Materials, Northeastern University at Qinhuangdao [3]Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University [4]Institute of Advanced Electrochemical Energy, Xi'an University of Technology

出  处:《Journal of Energy Chemistry》2019年第4期54-78,共25页能源化学(英文版)

基  金:financially supported by the National Natural Science Foundation of China (nos. 51774002 and 51672156);Anhui Provincial Science Fund for Excellent Young Scholars (no. gxyqZD2016066);the National Key Basic Research Program of China (2014CB932400);Guangdong special support program (2015TQ01N401);Shenzhen Technical Plan Project (KQJSCX20160226191136)

摘  要:Supercapacitors known as typical electrochemical capacitors have been considered as one of the most promising candidates of energy storage systems owing to their advantages such as high-power density,long life span and lower production cost.The electrode materials play a crucial role on properties of supercapacitors.Hence,many researches have been focused on the development of novel electrode materials for high-performance supercapacitors.NiCo_2O_4as supercapacitor electrode material has drawn more and more attentions in recent years due to its outstanding advantages,such as high theoretical capacity,low cost,natural abundance and easy of synthesis.However,the NiCo_2O_4always suffer from severe capacity deterioration because of the low electrical conductivity and small surface area.Hence,it is necessary to systematically and comprehensively summarize the progress in understanding and modifying NiCo_2O_4-based materials from various aspects.In this review,the structure and synthesis method of NiCo_2O_4-based materials are discussed in detail.And then,the major goal of this review is to highlight new progress in using proposed strategies to improve the cycling stability and rate capacity of NiCo_2O_4-based materials,including synthesis,control of special morphologies and design of composite materials.Finally,an insight into the future research and development of Ni Co_2O_4-based materials for supercapacitors is prospected.Supercapacitors known as typical electrochemical capacitors have been considered as one of the most promising candidates of energy storage systems owing to their advantages such as high-power density,long life span and lower production cost.The electrode materials play a crucial role on properties of supercapacitors.Hence,many researches have been focused on the development of novel electrode materials for high-performance supercapacitors.NiCo_2O_4as supercapacitor electrode material has drawn more and more attentions in recent years due to its outstanding advantages,such as high theoretical capacity,low cost,natural abundance and easy of synthesis.However,the NiCo_2O_4always suffer from severe capacity deterioration because of the low electrical conductivity and small surface area.Hence,it is necessary to systematically and comprehensively summarize the progress in understanding and modifying NiCo_2O_4-based materials from various aspects.In this review,the structure and synthesis method of NiCo_2O_4-based materials are discussed in detail.And then,the major goal of this review is to highlight new progress in using proposed strategies to improve the cycling stability and rate capacity of NiCo_2O_4-based materials,including synthesis,control of special morphologies and design of composite materials.Finally,an insight into the future research and development of Ni Co_2O_4-based materials for supercapacitors is prospected.

关 键 词:NiCo_(2)O_(4) Electrochemical performance Synthesis Morphology SUPERCAPACITORS 

分 类 号:O4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象