检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:莫辉 赵建强 MO Hui;ZHAO Jianqiang(Lingnan Integrated Exploration and Design Institute of Guangdong Province,Guangzhou, Guangdong 510500,China)
机构地区:[1]广东省岭南综合勘察设计院,广东广州510500
出 处:《林业与环境科学》2019年第2期55-61,共7页Forestry and Environmental Science
摘 要:以木荷Schima superba次生异龄林为研究对象,选取3种经验生长方程和3种理论生长方程拟合木荷单木的直径、树高以及材积的生长过程,然后利用连年生长量与平均生长量的关系分析木荷直径、树高以及材积的生长特征。结果表明,理论生长方程在模拟精度以及生物学解释上均优于经验生长方程,木荷的单木直径最优生长方程为Richards方程:D=37.21×(1-e^(-0.0496×A))^(2.0102),树高最优生长方程为Gompertz方程:H=19.43×e^(-2.7091×e-0.0848×A),材积最优生长方程为Logistic方程:■木荷单木生长模型的构建及生长特征的分析为木荷次生异龄林的质量精准提升提供一定的参考价值。Based on the Schima superba secondary forest,three empirical growth equations and three theoretical growth equations were selected to fit the growth process of the diameter, height and volume of the wood,then the relationship between annual growth and average growth was used to analyze the growth characteristics of S. superba in diameter, height and volume. The results showed that, the theoretical growth equation was superior to the empirical growth equation in the simulation precision and biological interpretation,the optimal growth equation of the diameter was the Richards equation, the expression was D=37.21×(1-e^-0.0496×A)^2.0102, the optimal growth equation of the height was the Gompertz equation, the expression was H=19.43×e^-2.7091×e-0.0848×A, the optimal growth equation of the volume was the Logistic equation, the expression was V=0.2734/1+416.8914×e^-0.2752×A. The establishment of the growth model of S. superba provided certain reference for the accurate quality improvement of S. superba secondary forest.
分 类 号:S757.1[农业科学—森林经理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43