Drosophila homolog of the intellectual disability-related long-chain acyl-CoA synthetase 4 is required for neuroblast proliferation  被引量:2

Drosophila homolog of the intellectual disability-related long-chain acyl-CoA synthetase 4 is required for neuroblast proliferation

在线阅读下载全文

作  者:Mingyue Jia Danqing Meng Mo Chen Tingting Li Yong Q.Zhang Aiyu Yao 

机构地区:[1]State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences [2]University of Chinese Academy of Sciences

出  处:《Journal of Genetics and Genomics》2019年第1期5-17,共13页遗传学报(英文版)

基  金:supported by the grants from the Ministry of Science and Technology (2016YFA0501000);the National Science Foundation of China to YQZ (31490592) and AY (31271121)

摘  要:Mutations in long-chain acyl-CoA synthetase 4 (ACSL4) are associated with non-syndromic X-linked intellectual disability (ID). However, the neural functions of ACSL4 and how loss of ACSL4 leads to ID remain largely unexplored. We report here that mutations in Acsl, the Drosophila ortholog of human ACSL3 and ACSL4, result in developmental defects of the mushroom body (MB), the center of olfactory learning and memory. Specifically, Acsl mutants show fewer MB neuroblasts (Nbs) due to reduced proliferation activity and premature differentiation. Consistently, these surviving Nbs show reduced expression of cyclin E, a key regulator of the G1-to S-phase cell cycle transition, and nuclear mislocalization of the transcriptional factor Prospero, which is known to repress self-renewal genes and activate differentiating genes. Furthermore, RNA-seq analysis reveals downregulated Nb-and cell-cyclerelated genes and upregulated neuronal differentiation genes in Acsl mutant Nbs. As Drosophila Acsl and human ACSL4 are functionally conserved, our findings provide novel insights into a critical and previously unappreciated role of Acsl in neurogenesis and the pathogenesis of ACSL4-related ID.Mutations in long-chain acyl-CoA synthetase 4 (ACSL4) are associated with non-syndromic X-linked intellectual disability (ID). However, the neural functions of ACSL4 and how loss of ACSL4 leads to ID remain largely unexplored. We report here that mutations in Acsl, the Drosophila ortholog of human ACSL3 and ACSL4, result in developmental defects of the mushroom body (MB), the center of olfactory learning and memory. Specifically, Acsl mutants show fewer MB neuroblasts (Nbs) due to reduced proliferation activity and premature differentiation. Consistently, these surviving Nbs show reduced expression of cyclin E, a key regulator of the G1-to S-phase cell cycle transition, and nuclear mislocalization of the transcriptional factor Prospero, which is known to repress self-renewal genes and activate differentiating genes. Furthermore, RNA-seq analysis reveals downregulated Nb-and cell-cyclerelated genes and upregulated neuronal differentiation genes in Acsl mutant Nbs. As Drosophila Acsl and human ACSL4 are functionally conserved, our findings provide novel insights into a critical and previously unappreciated role of Acsl in neurogenesis and the pathogenesis of ACSL4-related ID.

关 键 词:ACSL4 DROSOPHILA MUSHROOM body NEUROBLAST Neural stem cell PREMATURE differentiation 

分 类 号:R[医药卫生]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象