Superior adsorption performance of graphitic carbon nitride nanosheets for both cationic and anionic heavy metals from wastewater  被引量:6

Superior adsorption performance of graphitic carbon nitride nanosheets for both cationic and anionic heavy metals from wastewater

在线阅读下载全文

作  者:Gang Xiao Yaoqiang Wang Shengnan Xu Peifeng Li Chen Yang Yu Jin Qiufeng Sun Haijia Su 

机构地区:[1]State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology

出  处:《Chinese Journal of Chemical Engineering》2019年第2期305-313,共9页中国化学工程学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(21525625);the National Basic Research Program(973 Program) of China(2014CB745100);the(863) High Technology Project of China(2013AA020302);the Chinese Universities Scientific Fund(JD1417);China Postdoctoral Science Foundation funded project(2017M610038);the Fundamental Research Funds for the Central Universities(ZY1712,XK1701)

摘  要:Water pollution caused by highly toxic Cd(II), Pb(II), and Cr(VI) is a serious problem. In the present work,a green and low-cost adsorbent of g-C_3N_4 nanosheets was developed with superior capacity for both cationic and anionic heavy metals. The adsorbent was easily fabricated through one-step calcination of guanidine hydrochloride with thickness less than 1.6 nm and specific surface area of 111.2 m^2·g^(-1). Kinetic and isotherm studies suggest that the adsorption is an endothermic chemisorption process, occurring on the energetically heterogeneous surface based on a hybrid mechanism of multilayer and monolayer adsorption. The tri-s-triazine units and surface N-containing groups of g-C_3N_4 nanosheets are proposed to be responsible for the adsorption process.Further study on pH demonstrates that electrostatic interaction plays an important role. The maximum adsorption capacity of Cd(II), Pb(II), and Cr(VI) on g-C_3N_4 nanosheets is 123.205 mg·g^(-1), 136.571 mg·g^(-1),and 684.451 mg·g^(-1), respectively. The better adsorption performance of the adsorbent than that of the recently reported nanomaterials and low-cost adsorbents proves its great application potential in the removal of heavy metal contaminants from wastewater. The present paper developed a promising adsorbent which will certainly find applications in wastewater treatment and also provides guiding significance in designing adsorption processes.Water pollution caused by highly toxic Cd(II), Pb(II), and Cr(VI) is a serious problem. In the present work,a green and low-cost adsorbent of g-C_3N_4 nanosheets was developed with superior capacity for both cationic and anionic heavy metals. The adsorbent was easily fabricated through one-step calcination of guanidine hydrochloride with thickness less than 1.6 nm and specific surface area of 111.2 m^2·g^(-1). Kinetic and isotherm studies suggest that the adsorption is an endothermic chemisorption process, occurring on the energetically heterogeneous surface based on a hybrid mechanism of multilayer and monolayer adsorption. The tri-s-triazine units and surface N-containing groups of g-C_3N_4 nanosheets are proposed to be responsible for the adsorption process.Further study on pH demonstrates that electrostatic interaction plays an important role. The maximum adsorption capacity of Cd(II), Pb(II), and Cr(VI) on g-C_3N_4 nanosheets is 123.205 mg·g^(-1), 136.571 mg·g^(-1),and 684.451 mg·g^(-1), respectively. The better adsorption performance of the adsorbent than that of the recently reported nanomaterials and low-cost adsorbents proves its great application potential in the removal of heavy metal contaminants from wastewater. The present paper developed a promising adsorbent which will certainly find applications in wastewater treatment and also provides guiding significance in designing adsorption processes.

关 键 词:g-C3N4 NANOSHEETS NANOMATERIALS Adsorption Heavy metals WASTEWATER 

分 类 号:TQ[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象