Observational evidences of wave excitation and inverse cascade in a distant Earth foreshock region  

Observational evidences of wave excitation and inverse cascade in a distant Earth foreshock region

在线阅读下载全文

作  者:Jiansen HE Die DUAN Xingyu ZHU Limei YAN Linghua WANG 

机构地区:[1]School of Earth and Space Sciences, Peking University [2]Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences

出  处:《Science China Earth Sciences》2019年第4期619-630,共12页中国科学(地球科学英文版)

基  金:Peking University is supported by National Natural Science Foundation of China(Grant Nos.41574168,41874200,41674171,41774183,and 41421003)

摘  要:The foreshock with nascent plasma turbulence is regarded as a fascinating region to understand basic plasma physical processes, e.g., wave-particle interactions as well as wave-wave couplings. Although there have been plenty of intensive studies on this topic, some key clues about the physical processes still lack observations. A relatively comprehensive case study with some new observations is presented in this work based on the WIND spacecraft observations. In this case, upstream energetic protons were drifting at tens of Alfvén speed with respect to the background plasma protons. When looking at the magnetic wave activities, we find the co-existence of high-frequency(0.1-0.5 Hz) large-amplitude right-hand polarized(RHP) waves and lowfrequency(0.02-0.1 Hz) small-amplitude left-hand polarized(LHP) waves in the spacecraft(SC) frame. The observed anticorrelation between magnetic and velocity fluctuations along with the sunward magnetic field direction indicates that the lowfrequency LHP waves in the SC frame are in fact the sunward upstream RHP Alfvénic waves in the solar wind frame. This new observation corroborates the applicability of theories about plasma non-resonance instability and inverse cascade to the foreshock region, where the downstream high-frequency RHP parent waves are excited by the upstream energetic protons through non-resonance instability and the low-frequency RHP daughter waves are generated by the parent waves due to nonlinear parametric instability. Furthermore, enhanced downstream energetic proton fluxes are inferred to result from scattering of the upstream protons by the nascent turbulent fluctuations. Therefore, some critical clues about the newborn turbulence in the foreshock are provided in this work.The foreshock with nascent plasma turbulence is regarded as a fascinating region to understand basic plasma physical processes, e.g., wave-particle interactions as well as wave-wave couplings. Although there have been plenty of intensive studies on this topic, some key clues about the physical processes still lack observations. A relatively comprehensive case study with some new observations is presented in this work based on the WIND spacecraft observations. In this case, upstream energetic protons were drifting at tens of Alfvén speed with respect to the background plasma protons. When looking at the magnetic wave activities, we find the co-existence of high-frequency(0.1-0.5 Hz) large-amplitude right-hand polarized(RHP) waves and lowfrequency(0.02-0.1 Hz) small-amplitude left-hand polarized(LHP) waves in the spacecraft(SC) frame. The observed anticorrelation between magnetic and velocity fluctuations along with the sunward magnetic field direction indicates that the lowfrequency LHP waves in the SC frame are in fact the sunward upstream RHP Alfvénic waves in the solar wind frame. This new observation corroborates the applicability of theories about plasma non-resonance instability and inverse cascade to the foreshock region, where the downstream high-frequency RHP parent waves are excited by the upstream energetic protons through non-resonance instability and the low-frequency RHP daughter waves are generated by the parent waves due to nonlinear parametric instability. Furthermore, enhanced downstream energetic proton fluxes are inferred to result from scattering of the upstream protons by the nascent turbulent fluctuations. Therefore, some critical clues about the newborn turbulence in the foreshock are provided in this work.

关 键 词:Solar WIND FORESHOCK Wave-particle interaction PARAMETRIC INSTABILITY 

分 类 号:P[天文地球]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象