检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐炜娜 张广乐 李仕红[1] 陈园园[1] 李强[1] 杨涛[1] 许明敏 乔宁 张良云[1] XU Wei-na;ZHANG Guang-le;LI Shi-hong;CHEN Yuan-yuan;LI Qiang;YANG Tao;XU Ming-min;QIAO Ning;ZHANG Liang-yun(College of Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China)
出 处:《山东大学学报(理学版)》2019年第3期85-92,101,共9页Journal of Shandong University(Natural Science)
基 金:国家自然科学基金资助项目(11571173; 11401311; 11601231)
摘 要:为了深入了解和探索lincRNA的调控机制,建立了lincRNA高效识别模型,有助于为后续研究提供数据源。依据最小自由能(minimum free energy, MFE)和信噪比(signal-noise ratio, SNR)等特征,并通过特征贡献度大小剔除冗余特征,构建随机森林(random forest, RF)分类模型,有效地识别lincRNAs。经检验,模型的灵敏度、特异性和精确度分别达到94.1%、93.2%和93.7%,高于现有PhyloCSF、LncRNA-ID和CPC方法的各项识别指标。模型在识别过程中表现出较好的鲁棒性,可准确识别lincRNA。A data source for understanding lincRNAs′ regulatory mechanisms by accurate identification is provided. With the features of minimum free energy and signal-noise ratio, we remove the redundant features by feature contribution. Thus, we develop a machine learning model(random forest) based on random forest algorithm to identify lincRNAs. After inspecting with the same experimental dataset, we prove that the sensitivity, specificity and accuracy of this new method have reached 94.1%, 93.2% and 93.7%, which are higher than the current identification index of the methods of PhyloCSF, LncRNA-ID and CPC. The method proposed in this paper shows better robustness and effective classification.
关 键 词:基因间长非编码RNA 随机森林算法 最小自由能 信噪比
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145