检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晗 张峰 薛惠锋[1] WANG Han;ZHANG Feng;XUE Hui-feng(China Academy of Aerospace System Scientific and Engineering,Beijing 100048,China;School of Management,Shandong University of Technology,Shandong Zibo 255012,China)
机构地区:[1]中国航天系统科学与工程研究院,北京100048 [2]山东理工大学管理学院,山东淄博255012
出 处:《节水灌溉》2019年第4期72-76,共5页Water Saving Irrigation
基 金:国家自然科学基金项目(U1501253);广东省省级科技计划项目(2016B010127005)
摘 要:水资源污染负荷强度预测是水污染防治的关键环节。基于灰色系统理论,构建了水资源污染负荷强度的GM(1,1)模型、Verhulst模型和SCGM(1,1)c模型,并利用预测有效度计算各单预测模型的权重,进而建立水资源污染负荷强度的灰色GM-Verhulst-SCGM组合预测模型,在此基础上,选取2004-2013年期间工业单位产值化学需氧量排放量历史数据进行模型拟合,利用其2014-2016年数据进行模型检验。研究发现,灰色组合预测模型呈现出更低的预测误差,符合水资源污染负荷强度高精度预测需求;而通过对水资源污染负荷强度实证预测发现,其负荷强度整体上呈逐步削弱的态势,但可能会出现其高速下降向稳步趋缓转变的速率"拐点",预示着水污染防治将由"浅水区"向"深水区"的转变。The prediction of water pollution load intensity is the key link of water pollution control. Hence, the GM(1,1) model, Verhulst model and SCGM(1,1)c model of water pollution load intensity were constructed based on grey system theory, and then the weight of these predictive models was calculated by predicting effectiveness method, and the GM-Verhulst-SCGM grey combination prediction model could be constructed. Moreover, the historical data of chemical oxygen demand (COD) emissions per unit of industrial output value was applied to model fitting from 2004 to 2013, and the data from 2014 to 2016 was applied to model test. The results showed that: the prediction error of grey combination model was lower, so it met the need of accurate prediction of water pollution load intensity. Meanwhile, empirical analysis found that the water pollution load intensity was gradually declined, but there might be an “inflection point” could emerge. It meant that the rate of water pollution load intensity descent will gradually slow down form high speed, and the water pollution control would be changed from “shallow water area” to “deep water area”.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15