基于统计特征和桥梁方法的红外弱小目标检测算法  被引量:8

Infrared Dim Target Detection Based on Statistical Characteristics and Bridge Method

在线阅读下载全文

作  者:韩志华 刘晶红[1] 徐芳[1,2] Han Zhihua;Liu Jinghong;Xu Fang(Key Laboratory of Airborne Optical Imaging and Measurement,Changchun Institute of Optical Precision Machinery and Physics,Chinese Academy of Sciences,Chavgch,Jilin 130033,China;University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室,吉林长春130033 [2]中国科学院大学,北京100049

出  处:《激光与光电子学进展》2019年第6期78-84,共7页Laser & Optoelectronics Progress

基  金:国家自然科学基金(60902067);吉林省重大科技攻关项目(11ZDGG001)

摘  要:为了更有效地检测出红外弱小目标,通过分析红外图像中弱小目标与其邻域背景的特征差异性,提出了一种基于统计特征和桥梁方法的红外小目标检测算法。在滑动窗口范围内提取像素值的均值、方差等特征,根据这些统计特征和桥梁方法判断该窗口范围内有无红外小目标;如果存在小目标,记录下其位置;对小目标区域进行二次筛选。研究结果表明,所提算法相对于较经典算法,虚警率降低了58%以上。In order to detect dim the small infrared targets more effectively, a small infrared target detection algorithm based on statistical features and bridge method is proposed by analyzing the difference between the small dim infrared targets in infrared images and their neighborhood backgrounds. The mean value, variance and other characteristics of pixel values are extracted in the sliding window range. According to these statistical characteristics and the bridge method, whether there are small infrared targets in the window range is determined. If there is a small target, its location is recorded, and then the small target area is screened twice. The research results show that the false alarm rate of the proposed algorithm is 58% lower than that of the classical algorithm.

关 键 词:探测器 红外探测器 弱小目标检测 统计特征 桥梁 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象