用于面诊的嘴巴定位算法研究  被引量:2

Mouth segmentation algorithm for facial diagnosis in traditional Chinese medicine

在线阅读下载全文

作  者:罗胜男 陈兆学[1] LUO Shengnan;CHEN Zhaoxue(School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

机构地区:[1]上海理工大学医疗器械与食品学院,上海200093

出  处:《中国医学物理学杂志》2019年第4期440-446,共7页Chinese Journal of Medical Physics

基  金:上海市教委高原学科项目

摘  要:针对嘴巴区域特征的精确定位对于中医面诊客观化的研究具有重要意义,提出一种基于双肤色模型、椭圆拟合与改进C-V水平集模型相结合的分割嘴巴的方法。考虑到肤色在像素空间邻域与灰度值域的平滑相似性,首先给出一种二维伽马函数的自适应光照补偿法,提升非均匀光照下肤色聚类的稳定性,进而利用根据实验确定的双肤色模型,进行肤色检测,并采用数学形态学方法去除噪声等影响,Sobel方法提取轮廓;然后根据所得的边缘和初步轮廓利用直接最小二乘椭圆拟合法提取人脸区域;最后采用改进C-V水平集模型对嘴部区域进行分割。实验结果表明,采用该算法能够得到更好的分割效果,满足中医面诊图像分割要求,为面部五官的进一步分割和检测奠定基础。The precise location according to the characteristics of the mouth area is of great significance for the study of the objectification of traditional Chinese medicine. Therefore, a method based on double skin color model, ellipse fitting and improved C-V level set model is proposed in this study. With the consideration of the smooth similarity of skin color in spatial neighborhood and gray-level domain, an adaptive illumination compensation method based on two-dimensional gamma function is firstly proposed to improve the stability of skin color clustering under non-uniform illumination. Subsequently, the experimentally determined double skin color model is used to perform skin color detection;and mathematical morphology is used to remove noise and other effects;and Sobel method was used to extract the contours. Based on the obtained edge and preliminary contours,the face region was extracted with direct least squares ellipse fitting method. Finally, the mouth area was segmented with the improved C-V level set model. The experimental results reveal that the proposed algorithm can obtain better segmentation results and meet the requirements of facial diagnosis in traditional Chinese medicine, laying a foundation for further segmentation and detection of facial features.

关 键 词:中医面诊 人脸分割 嘴巴 双肤色模型 椭圆拟合 改进C-V水平集模型 

分 类 号:R312[医药卫生—基础医学] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象