机构地区:[1]CAS Key Laboratory of FAST,National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China [2]School of Astronomy and Space Sciences,University of Chinese Academy of Sciences,Beijing 100049,China [3]Max-Planck-Institut fur Radioastronomie,Auf dem Hugel 69,Bonn 53121,Gennany [4]不详
出 处:《Science China(Physics,Mechanics & Astronomy)》2019年第5期32-37,共6页中国科学:物理学、力学、天文学(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.11673031,11703048,and U1731238);the Open Project Program of the Key Laboratory of FAST,NAOC;the financial support by the European Research Council for the ERC Synergy Grant BlackHoleCam(Grant No.610058);the FAST FELLOWSHIP from Special Funding for Advanced Users,budgeted and administrated by Center for Astronomical Mega-Science,Chinese Academy of Sciences(CAMS);the MPG-CAS Joint Project "Low-Frequency Gravitational Wave Astronomy and Gravitational Physics in Space"
摘 要:PSR B0919+06 is known for its abnormal emission phenomenon, where the pulse emission window occasionally shifts progressively in longitude and returns afterwards. The physical mechanism behind this phenomenon is still under investigation. In this paper, we present our ultra-wideband observation of this pulsar using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), with simultaneous measurements in the frequency ranges 280-780 and 1250-1550 MHz. We have identified three abnormal events, each of which becomes less apparent as the frequency decreases. At 1400 MHz, the averaged profile slightly shifted after the first and third abnormal events, implying a relationship between abnormal event and profile variation. We also found a linear trend in the left-edge position of the averaged profiles between the first and third events as well as after the third event, suggesting the existence of a slow-drifting mode between the two major events. The second event has a comparatively small shift in phase and is thus categorized as a "small flare state". During the third event, a sequence of approximately nine pulses was seen to significantly weaken in all frequency bands, likely associated with the pseudo-nulling observed at 150 MHz.A three-component de-composition analysis of the normal averaged profiles shows that the trailing component is dominant at our observing frequencies, while the centre component has a comparatively steeper spectrum. We found the overall flux density in an abnormal event to slightly differ from that in an ordinary state, and the difference shows a frequency dependence. A comparison of the normal, abnormal and dimmed averaged profile indicates that the leading component is likely to be stable in all states.PSR B0919+06 is known for its abnormal emission phenomenon, where the pulse emission window occasionally shifts progressively in longitude and returns afterwards. The physical mechanism behind this phenomenon is still under investigation. In this paper, we present our ultra-wideband observation of this pulsar using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), with simultaneous measurements in the frequency ranges 280-780 and 1250-1550 MHz. We have identified three abnormal events, each of which becomes less apparent as the frequency decreases. At 1400 MHz, the averaged profile slightly shifted after the first and third abnormal events, implying a relationship between abnormal event and profile variation. We also found a linear trend in the left-edge position of the averaged profiles between the first and third events as well as after the third event, suggesting the existence of a slow-drifting mode between the two major events. The second event has a comparatively small shift in phase and is thus categorized as a "small flare state". During the third event, a sequence of approximately nine pulses was seen to significantly weaken in all frequency bands, likely associated with the pseudo-nulling observed at 150 MHz.A three-component de-composition analysis of the normal averaged profiles shows that the trailing component is dominant at our observing frequencies, while the centre component has a comparatively steeper spectrum. We found the overall flux density in an abnormal event to slightly differ from that in an ordinary state, and the difference shows a frequency dependence. A comparison of the normal, abnormal and dimmed averaged profile indicates that the leading component is likely to be stable in all states.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...