一种屏幕内容编码帧间模式快速选择算法  被引量:1

A fast inter mode selection algorithm for screen content coding

在线阅读下载全文

作  者:李强[1] 宋剑霖 LI Qiang;SONG Jian-lin(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065

出  处:《光电子.激光》2019年第1期36-43,共8页Journal of Optoelectronics·Laser

基  金:重庆市基础与前沿研究计划项目(cstc2017jcyjBX0037;cstc2016jcyjA0543)资助项目

摘  要:屏幕内容编码(SCC)作为高效视频编码(HEVC)的扩展,在压缩屏幕内容方面有着显著的效果,但也导致了编码器计算复杂度较高的问题。为此,本文提出一种屏幕内容编码帧间模式快速选择算法。首先,根据像素点亮度值的变化情况,提前判断出静止区域并使用Skip模式;其次,根据屏幕内容多包含有水平及竖直边缘的特点,利用编码单元(CU)的水平及竖直活动性确定相应的预测单元(PU)划分模式,减少帧间预测时需要遍历的PU个数;最后,根据时空域相邻CU的深度信息预测当前CU的深度范围,跳过不必要的深度遍历。实验结果表明,与SCM-8.0相比,在随机接入与低延时两种编码模式下,本文所提算法分别节省43.6%和49.09%的编码时间,码率分别上升3.06%和3.43%,视频质量几乎不变。To reduce the computational complexity,a fast inter mode selection algorithm for screen content coding(SCC) is proposed in this paper.First,the change of luminance values between current pixel and its co-located pixel is utilized to detect static regions and Skip mode is applied.Next,given that a large number of horizontal and vertical edges occur in screen content,corresponding prediction unit(PU) partition modes are selected according to coding unit(CU) activity,and the number of PU modes for inter prediction can be reduced.Finally,depth range of current CU is predicted by utilizing the CU depths of adjacent CUs in both temporal and spatial domains,and unnecessary depths are skipped.Experimental results show that compared with SCM-8.0 anchor,the proposed algorithm can save 43.6% and 49.09% encoding time on average with 3.06% and 3.43% BD-rate loss for random access and low delay configurations,respectively,while the loss of video quality can be negligible.Therefore,this study shows a certain reference value for the real-time application of SCC.

关 键 词:屏幕内容编码 计算复杂度 帧间模式快速选择 

分 类 号:TN919.[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象