机构地区:[1]Department of Physics Shanghai Normal University [2]State Key Laboratory for Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences [3]University of Chinese Academy of Sciences
出 处:《Chinese Physics B》2019年第4期18-22,共5页中国物理B(英文版)
基 金:Project supported by the State Key Basic Research Program of China(Grant Nos.2017YFA0205801,2017YFA0305500,and 2013CB632705);the National Natural Science Foundation of China(Grant Nos.11334008,61290301,61521005,61405230,and 61675222);the Youth Innovation Promotion Association(CAS);the Aviation Science Fund(Grant No.20162490001)
摘 要:Two-dimensional transition metal dichalcogenides(TMDs) provide fertile ground to study the interplay between dimensionality and electronic properties because they exhibit a variety of electronic phases, such as semiconducting, superconducting, charge density waves(CDW) states, and other unconventional physical properties. Compared with other classical TMDs, such as Mott insulator 1T–TaS_2 or superconducting 2H–NbSe_2, bulk 2H–TaSe_2 has been a canonical system and a touchstone for modeling the CDW measurement with a less complex phase diagram. In contrast to ordinary semiconductors that have only single-particle excitations, CDW can have collective excitation and carry current in a collective fashion. However, manipulating this collective condensation of these intriguing systems for device applications has not been explored. Here, the CDW-induced collective driven of non-equilibrium carriers in a field-effect transistor has been demonstrated for the sensitive photodetection at the highly-pursuit terahertz band. We show that the 2H–TaSe_2-based photodetector exhibits a fast photoresponse, as short as 14 μs, and a responsivity of over 27 V/W at room temperature. The fast response time, relative high responsivity and ease of fabrication of these devices yields a new prospect of exploring CDW condensate in TMDs with the aim of overcoming the existing limitations for a variety of practical applications at THz spectral range.Two-dimensional transition metal dichalcogenides(TMDs) provide fertile ground to study the interplay between dimensionality and electronic properties because they exhibit a variety of electronic phases, such as semiconducting, superconducting, charge density waves(CDW) states, and other unconventional physical properties. Compared with other classical TMDs, such as Mott insulator 1T–TaS_2 or superconducting 2H–NbSe_2, bulk 2H–TaSe_2 has been a canonical system and a touchstone for modeling the CDW measurement with a less complex phase diagram. In contrast to ordinary semiconductors that have only single-particle excitations, CDW can have collective excitation and carry current in a collective fashion. However, manipulating this collective condensation of these intriguing systems for device applications has not been explored. Here, the CDW-induced collective driven of non-equilibrium carriers in a field-effect transistor has been demonstrated for the sensitive photodetection at the highly-pursuit terahertz band. We show that the 2H–TaSe_2-based photodetector exhibits a fast photoresponse, as short as 14 μs, and a responsivity of over 27 V/W at room temperature. The fast response time, relative high responsivity and ease of fabrication of these devices yields a new prospect of exploring CDW condensate in TMDs with the aim of overcoming the existing limitations for a variety of practical applications at THz spectral range.
关 键 词:TERAHERTZ detection transition metal DICHALCOGENIDES PHOTOCONDUCTIVE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...