Entangled multi-knot lattice model of anyon current  

Entangled multi-knot lattice model of anyon current

在线阅读下载全文

作  者:Tieyan Si 司铁岩(Physics Department, School of Sciences, Key Laboratory of Microsystems and Microstructures Manufacturing-Ministry of Education,Harbin Institute of Technology)

机构地区:[1]Physics Department, School of Sciences, Key Laboratory of Microsystems and Microstructures Manufacturing-Ministry of Education,Harbin Institute of Technology

出  处:《Chinese Physics B》2019年第4期76-107,共32页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant No.11304062)

摘  要:We proposed an entangled multi-knot lattice model to explore the exotic statistics of anyons. Long-range coupling interaction is a fundamental character of this knot lattice model. The short-range coupling models, such as the Ising model,Hamiltonian model of quantum Hall effect, fermion pairing model, Kitaev honeycomb lattice model, and so on, are the short-range coupling cases of this knot lattice model. The long-range coupling knot lattice model bears Abelian and nonAbelian anyons, and shows integral and fractional filling states like the quantum Hall system. The fusion rules of anyons are explicitly demonstrated by braiding crossing states. The eigenstates of quantum models can be represented by a multilayer link lattice pattern whose topology is characterized by the linking number. This topological linking number offers a new quantity to explain and predict physical phenomena in conventional quantum models. For example, a convection flow loop is introduced into the well-known Bardeen–Cooper–Schrieffer fermion pairing model to form a vortex dimer state that offers an explanation of the pseudogap state of unconventional superconductors, and predicts a fractionally filled vortex dimer state. The integrally and fractionally quantized Hall conductance in the conventional quantum Hall system has an exact correspondence with the linking number in this multi-knot lattice model. The real-space knot pattern in the topological insulator model has an equivalent correspondence with the Lissajous knot in momentum space. The quantum phase transition between different quantum states of the quantum spin model is also directly quantified by the change of topological linking number, which revealed the topological character of phase transition. Circularized photons in an optical fiber network are a promising physical implementation of this multi-knot lattice, and provide a different path to topological quantum computation.We proposed an entangled multi-knot lattice model to explore the exotic statistics of anyons. Long-range coupling interaction is a fundamental character of this knot lattice model. The short-range coupling models, such as the Ising model,Hamiltonian model of quantum Hall effect, fermion pairing model, Kitaev honeycomb lattice model, and so on, are the short-range coupling cases of this knot lattice model. The long-range coupling knot lattice model bears Abelian and nonAbelian anyons, and shows integral and fractional filling states like the quantum Hall system. The fusion rules of anyons are explicitly demonstrated by braiding crossing states. The eigenstates of quantum models can be represented by a multilayer link lattice pattern whose topology is characterized by the linking number. This topological linking number offers a new quantity to explain and predict physical phenomena in conventional quantum models. For example, a convection flow loop is introduced into the well-known Bardeen–Cooper–Schrieffer fermion pairing model to form a vortex dimer state that offers an explanation of the pseudogap state of unconventional superconductors, and predicts a fractionally filled vortex dimer state. The integrally and fractionally quantized Hall conductance in the conventional quantum Hall system has an exact correspondence with the linking number in this multi-knot lattice model. The real-space knot pattern in the topological insulator model has an equivalent correspondence with the Lissajous knot in momentum space. The quantum phase transition between different quantum states of the quantum spin model is also directly quantified by the change of topological linking number, which revealed the topological character of phase transition. Circularized photons in an optical fiber network are a promising physical implementation of this multi-knot lattice, and provide a different path to topological quantum computation.

关 键 词:ANYON KNOT LATTICE LINKING number quantum HALL effect 

分 类 号:O4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象