Wetting failure condition on rough surfaces  

Wetting failure condition on rough surfaces

在线阅读下载全文

作  者:Feng-Chao Yang Xiao-Peng Chen 杨冯超;陈效鹏(School of Mechanics Civil Engineering and Architecture Northwestern Polytechnical University;School of Marine Science Northwestern Polytechnical University)

机构地区:[1]School of Mechanics Civil Engineering and Architecture Northwestern Polytechnical University [2]School of Marine Science Northwestern Polytechnical University

出  处:《Chinese Physics B》2019年第4期242-246,共5页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.11472220 and 11872315)

摘  要:Wetting states and processes attract plenty of interest of scientific and industrial societies. Air entrainment, i.e.,wetting failure, on smooth plate in wetting process has been investigated carefully before. Liquid bath entries of "rough"silicon wafers are studied experimentally in the present work, and the air entrainment condition is analyzed specially with the lubrication theory. The roughness effects on the moving contact lines are therefore explored. The contact line pinning is found to be the main reason for the dynamically enhanced hydrophobicity of rough surface, which implies an effective microscopic contact angle of θ_e = θ_Y + 90° where θY is the Young's contact angle of the material. Our results suggest that the solid surfaces can be considered as hydrophobic ones for a wide range of dynamic process, since they are normally rough. The work can also be considered as a starting point for investigating the high-speed advancing of moving contact line on rough surfaces.Wetting states and processes attract plenty of interest of scientific and industrial societies. Air entrainment, i.e.,wetting failure, on smooth plate in wetting process has been investigated carefully before. Liquid bath entries of "rough"silicon wafers are studied experimentally in the present work, and the air entrainment condition is analyzed specially with the lubrication theory. The roughness effects on the moving contact lines are therefore explored. The contact line pinning is found to be the main reason for the dynamically enhanced hydrophobicity of rough surface, which implies an effective microscopic contact angle of θ_e = θ_Y + 90° where θY is the Young's contact angle of the material. Our results suggest that the solid surfaces can be considered as hydrophobic ones for a wide range of dynamic process, since they are normally rough. The work can also be considered as a starting point for investigating the high-speed advancing of moving contact line on rough surfaces.

关 键 词:WETTING FAILURE ROUGHNESS LUBRICATION theory contact ANGLE 

分 类 号:O4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象