Homogenization of Linear Parabolic Equations with a Certain Resonant Matching Between Rapid Spatial and Temporal Oscillations in Periodically Perforated Domains  

Homogenization of Linear Parabolic Equations with a Certain Resonant Matching Between Rapid Spatial and Temporal Oscillations in Periodically Perforated Domains

在线阅读下载全文

作  者:Tatiana LOBKOVA 

机构地区:[1]Department of Mathematics and Science Education,Mid Sweden University

出  处:《Acta Mathematicae Applicatae Sinica》2019年第2期340-358,共19页应用数学学报(英文版)

摘  要:In this article, we study homogenization of a parabolic linear problem governed by a coefficient matrix with rapid spatial and temporal oscillations in periodically perforated domains with homogeneous Neumann data on the boundary of the holes. We prove results adapted to the problem for characterization of multiscale limits for gradients and very weak multiscale convergence.In this article, we study homogenization of a parabolic linear problem governed by a coefficient matrix with rapid spatial and temporal oscillations in periodically perforated domains with homogeneous Neumann data on the boundary of the holes. We prove results adapted to the problem for characterization of multiscale limits for gradients and very weak multiscale convergence.

关 键 词:HOMOGENIZATION TWO-SCALE CONVERGENCE multiscale CONVERGENCE PERIODICALLY perforated DOMAINS 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象