基于串行干扰消除的模分复用系统解复用  被引量:5

Demultiplexing of Mode-Division Multiplexing System Based on Successive Interference Cancellation

在线阅读下载全文

作  者:张天 李莉[1] 胡贵军[1] Zhang Tian;Li Li;Hu Guijun(College of Communication Engineering,Jilin University,Changchun,Jilin 130012,China)

机构地区:[1]吉林大学通信工程学院,吉林长春130012

出  处:《中国激光》2019年第3期212-218,共7页Chinese Journal of Lasers

基  金:国家自然科学基金(61575078;61177066)

摘  要:针对模式相关损耗(MDL)较大时最小均方误差(MMSE)算法无法有效实现模分复用系统(MDM)解复用的问题,提出了一种基于串行干扰消除(SIC)的MMSE解复用方法,以实现近似最大似然(ML)检测的性能。该方法通过消除大功率信号对其他各路信号的干扰达到补偿MDL的目的,再利用MMSE算法恢复源信号。对6×6的MDM系统进行了解复用,仿真结果显示,相比于MMSE算法,所提方法在不同耦合强度、有/无MDL下都能有效改善系统性能,且计算复杂度与MMSE算法的近似相同。当光纤传输距离为1200 km、差分模群时延(DMGD)为9 ps/km、耦合强度为-5 dB时,相较于MMSE算法,SIC-MMSE算法的光信噪比改善了3 dB。For the case that the minimum mean square error(MMSE)algorithm can not be used to realize the demultiplexing of mode-division multiplexing(MDM)when the mode dependent loss(MDL)is large,a demultiplexing method based on the successive interference cancellation(SIC)is proposed in order to nearly reach the performance of the maximum likelihood(ML)detection method.This method reduces the interference of the maximum power signal to the other signals and the aim for the compensation of MDL is obtained.Then the MMSE method is adopted to demultiplex the original signals.For the demultiplexing of a 6×6 MDM system under different coupling strengths as well as with and without MDL,the simulation results show that,the SIC-MMSE method always achieves good performance compared with the MMSE algorithm.The computational complexity is similar with that of the MMSE algorithm.With the differential mode group delay(DMGD)at 9 ps/km and coupling strength at-5 dB,the optical signal to noise ratio(OSNR)by the SIC-MMSE algorithm improves by 3 dB at a transmission distance of 1200 km compared with that of the MMSE algorithm.

关 键 词:光通信 模分复用 串行干扰消除 模式相关损耗 少模光纤 

分 类 号:TN913.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象