检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵长亮[1,2] 闵锦忠[1] SHAO Changliang;MIN Jinzhong(Collaborative Innovation Center on Forecast and Evaluation of Metorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China;CMA Meteorological Observation Centre,Beijing 100081,China)
机构地区:[1]南京信息工程大学气象灾害预报预警与评估协同创新中心,南京210044 [2]中国气象局气象探测中心,北京100081
出 处:《气象学报》2019年第2期233-242,共10页Acta Meteorologica Sinica
基 金:江苏省普通高校研究生科研创新计划项目(KYLX_0824);国家自然科学基金青年基金项目(41705133)
摘 要:为了更加有效地同化地面自动气象站观测资料,针对模式地形与观测站地形存在的高度差异对同化效果的影响,提出了相应的解决方案。在同化系统的位温和露点观测误差中分别引入位温和露点地形代表性误差,在WRF模式中应用集合均方根滤波方法(EnSRF)同化地面自动气象站观测资料,并对2016年一次京津冀暴雨个例进行数值试验。研究结果表明,同化地面资料后,同化阶段的均方根误差、预报阶段的降水TS评分和前13个时次各要素预报均有整体改进。在观测误差中引入地形代表性误差与引入前相比,风场均方根误差得到整体改进;位温和露点的均方根误差在前期表现并不稳定,在后期有所改进;预报阶段前24 h累计降水与后24 h累计降水TS评分在整体上均有所提高。新方案能够减少高度差异对同化效果的影响。In order to more efficiently assimilate surface Automatic Weather Station(AWS) data, a new scheme based on the Ensemble Square Root Filter(EnSRF) is proposed for further improvement via solving the negative impact of assimilation results caused by elevation differences between observation sites and the model surface. Terrain Error of Representativeness(TER) for potential temperature and dewpoint temperature are added to temperature and dewpoint temperature errors of surface observation data assimilation in the WRF-EnSRF system, and a numerical simulation of a heavy rain event in Beijing-Tianjin-Hebei region in 2016 has been conducted. Results show that the root mean square error(RMSE), the threat score(TS) and various elements simulated in the first 13 h generally have been improved. With the TER being added, the RMSE of the wind field is improved in general, whereas the RMSE of potential temperature and dewpoint temperature are unstable in the earlier stage but they are improved in the later stage;TS of the first 24 h and the 24-48 h accumulated rainfall are overall improved compared with the results without TER. Thereby, the new scheme is able to reduce the negative impact of assimilation results caused by elevation differences.
关 键 词:自动气象站资料 资料同化 集合均方根滤波 地形代表性误差
分 类 号:P456.7[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222