检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王珊珊 刘峥[1] 谢荣[1] 冉磊 WANG Shanshan;LIU Zheng;XIE Rong;RAN Lei(National Laboratory of Radar Signal Processing,Xidian University,Xi’an 710071,China)
机构地区:[1]西安电子科技大学雷达信号处理国家重点实验室,西安710071
出 处:《电子与信息学报》2019年第5期1040-1046,共7页Journal of Electronics & Information Technology
基 金:博士后创新人才支持计划(BX20180240)~~
摘 要:针对有源欺骗干扰环境下基于小样本的DOA估计问题,该文提出自适应极化滤波(APF)联合块稀疏贝叶斯学习(BSBL)算法的DOA估计方法。首先,通过APF抑制干扰能量,提高信干比。然后,建立有源欺骗干扰环境下的稀疏贝叶斯模型,基于相邻快拍相关性,利用BSBL算法进行DOA估计。仿真和实测数据处理结果表明,所提方法降低了干扰对BSBL算法的影响,且与APF联合子空间类算法或最大似然算法(ML)相比,具有更高的空间分辨率和DOA估计精度。For the target DOA estimation under active deception jamming environment with limited samples,a novel DOA estimation method based on the combination of Adaptive Polarization Filter(APF) and Block Sparse Bayesian Learning(BSBL) algorithm is proposed.First,the interference energy is suppressed using APF. Then,the proposed method constructs a sparse Bayesian model under active deception jamming environment. The target DOA is estimated using the BSBL algorithm based on the neighbor time sampling correlation. Simulated and measured data processing results prove that the proposed method reduces the influence of interference on the BSBL algorithm,and has higher spatial resolution and higher angle measurement accuracy, comparing with the method based on the combination of APF and subspace-based DOA algorithms or maximum likelihood DOA algorithm.
关 键 词:DOA估计 抗干扰 自适应极化滤波 块稀疏贝叶斯学习
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.227