检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘江义 王春平 王暐 LIU Jiangyi;WANG Chunping;WANG Wei(Department of Electronic and Optical Engineering, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China;Unit 65875 of the PLA, Weinan 714000, China)
机构地区:[1]陆军工程大学石家庄校区电子与光学工程系 [2]中国人民解放军65875部队
出 处:《系统工程与电子技术》2019年第5期944-950,共7页Systems Engineering and Electronics
摘 要:隐式马尔可夫链(hidden Markov chain,HMC)是传统多目标跟踪的理论基础。在分析了HMC模型的局限性基础上,介绍了更具普适性的双马尔可夫链(pairwise Markov chain,PMC)模型,对基于PMC模型的概率假设密度(PMC-probability hypothesis density,PMC-PHD)滤波算法进行了推导,并对其高斯混合(Gauss mixture,GM)实现进行了改进,利用椭圆波门给每一个高斯分量建立一个对应的缩减量测集合来对其进行更新。仿真实验证明在杂波密度较大的场景中,PMC-PHD滤波器GM实现的改进在不影响跟踪精度的情况下运行时间缩短为原来的三分之一;仿真实验还证明在HMC模型场景下PMC-PHD滤波器针对邻近目标的跟踪性能要优于HMC-PHD滤波器。Hidden Markov chain (HMC) is the theoretical basis of traditional multi-target tracking. Based on the analysis of the limitations of HMC model, the more general pairwise Markov chain (PMC) model is introduced, and probability hypothesis density (PHD) based on PMC model filtering algorithm is deduced, and its Gauss mixture (GM) implementation is improved by using an elliptic gate to establish a reduced measurement set for each Gaussian component to update corresponding Gaussian component. The simulation experiment shows that the improved GM implementation of PMC-PHD filter achieves 1/3 of the original time without affecting the tracking precision in the scenario of high clutter density, and the simulation experiment also proves that the tracking performance of PMC-PHD filter for the adjacent targets in the HMC model scene is better than HMC-PHD filter.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43