Free vibration of a sagged cable with attached discrete elements  

Free vibration of a sagged cable with attached discrete elements

在线阅读下载全文

作  者:W.PAKOS 

机构地区:[1]Faculty of Civil Engineering, Wroc law University of Science and Technology

出  处:《Applied Mathematics and Mechanics(English Edition)》2019年第5期631-648,共18页应用数学和力学(英文版)

摘  要:An algorithm is presented to analyze the free vibration in a system composed of a cable with discrete elements, e.g., a concentrated mass, a translational spring, and a harmonic oscillator. The vibrations in the cable are modeled and analyzed with the Lagrange multiplier formalism. Some fragments of the investigated structure are modeled with continuously distributed parameters, while the other fragments of the structure are modeled with discrete elements. In this case, the linear model of a cable with a small sag serves as a continuous model, while the elements, e.g., a translational spring, a concentrated mass, and a harmonic oscillator, serve as the discrete elements. The method is based on the analytical solutions in relation to the constituent elements, which, when once derived, can be used to formulate the equations describing various complex systems compatible with an actual structure. The numerical analysis shows that, the method proposed in this paper can be successfully used to select the optimal parameters of a system composed of a cable with discrete elements, e.g., to detune the frequency resonance of some structures.An algorithm is presented to analyze the free vibration in a system composed of a cable with discrete elements, e.g., a concentrated mass, a translational spring, and a harmonic oscillator. The vibrations in the cable are modeled and analyzed with the Lagrange multiplier formalism. Some fragments of the investigated structure are modeled with continuously distributed parameters, while the other fragments of the structure are modeled with discrete elements. In this case, the linear model of a cable with a small sag serves as a continuous model, while the elements, e.g., a translational spring, a concentrated mass, and a harmonic oscillator, serve as the discrete elements. The method is based on the analytical solutions in relation to the constituent elements, which, when once derived, can be used to formulate the equations describing various complex systems compatible with an actual structure. The numerical analysis shows that, the method proposed in this paper can be successfully used to select the optimal parameters of a system composed of a cable with discrete elements, e.g., to detune the frequency resonance of some structures.

关 键 词:free vibration sagged CABLE with ATTACHMENTS CONTINUOUS DISCRETE model 

分 类 号:O342[理学—固体力学] O325[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象