Nanoscale electropolishing of high-purity nickel with an ionic liquid  被引量:1

Nanoscale electropolishing of high-purity nickel with an ionic liquid

在线阅读下载全文

作  者:Jon Derek Loftis Tarek M.Abdel-Fattah 

机构地区:[1]Applied Research Center at Thomas Jefferson National Accelerator Facility and Department of Molecular Biology and Chemistry at Christopher Newport University [2]Department of Physical Sciences, Virginia Institute of Marine Science, College of William and Mary [3]Faculty of Sciences, Alexandria University

出  处:《International Journal of Minerals,Metallurgy and Materials》2019年第5期649-656,共8页矿物冶金与材料学报(英文版)

摘  要:High purity(>99.9% composition) nickel metal specimens were used in electropolishing treatments with an acid-free ionic liquid electrolyte prepared from quaternary ammonium salts as a green polishing solution. Voltammetry and chronoamperometry tests were conducted to determine the optimum conditions for electrochemical polishing. Atomic force microscopy(AFM) revealed nanoscale effectiveness of each polishing treatment. Atomic force microscopy provided an overall observation of the material interface between the treated and unpolished regions. Surface morphology comparisons summarized electrochemical polishing efficiency by providing root-mean-square roughness averages before and after electrochemical polishing to reveal a mirror finish six times smoother than the same nickel metal surface prior to electropolishing. This transition manifested in a marked change in root-mean-squared roughness from 112.58 nm to 18.64 nm and producing a smooth mirror finish. Finally, the mechanism of the ionic liquid during electropolishing revealed decomposition of choline in the form of a transient choline radical by acceptance of an electron from the nickel-working electrode to decompose to trimethylamine and ethanol.High purity(>99.9% composition) nickel metal specimens were used in electropolishing treatments with an acid-free ionic liquid electrolyte prepared from quaternary ammonium salts as a green polishing solution. Voltammetry and chronoamperometry tests were conducted to determine the optimum conditions for electrochemical polishing. Atomic force microscopy(AFM) revealed nanoscale effectiveness of each polishing treatment. Atomic force microscopy provided an overall observation of the material interface between the treated and unpolished regions. Surface morphology comparisons summarized electrochemical polishing efficiency by providing root-mean-square roughness averages before and after electrochemical polishing to reveal a mirror finish six times smoother than the same nickel metal surface prior to electropolishing. This transition manifested in a marked change in root-mean-squared roughness from 112.58 nm to 18.64 nm and producing a smooth mirror finish. Finally, the mechanism of the ionic liquid during electropolishing revealed decomposition of choline in the form of a transient choline radical by acceptance of an electron from the nickel-working electrode to decompose to trimethylamine and ethanol.

关 键 词:electrochemical POLISHING IONIC liquid Ni 2EG:1VB4 

分 类 号:TF[冶金工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象