检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任秀秀 杨卫华 REN Xiuxiu;YANG Weihua(College of Mathematics,Taiyuan University of Technology,Taiyuan,Shanxi,030024,P.R.China)
出 处:《数学进展》2019年第2期137-144,共8页Advances in Mathematics(China)
基 金:国家自然科学基金资助课题(Nos.11671296)
摘 要:有向图D=(V,A)的核K是顶点集V的一个子集,其中K中任意两点在D中均不相邻,并且对V\K中任意一个点v,都存在K中的一个点u,使得(v,u)是D中的一条弧.一般有向图核的存在问题是NP-完全的.Bang-Jensen和Gutin在他们的著作[Digraphs:Theory, Algorithms and Applications, London:Springer-Verlag, 2000]中提出公开问题(Problem 12.3.5):刻画有向循环图核存在性.本文研究了几类特殊有向循环图核的存在问题,并给出了Duchet核猜想(对任意一个不是有向奇圈的无核有向图,都存在一条弧,使得删除这条弧所得到的图仍然是无核的)的一类反例.A kernel in a directed graph D =(V, A) is a set K of vertices of D such that no two vertices in K are adjacent and for every vertex v in V\K there is a vertex u in K, such that(v, u) is an arc of D. It is well known that the problem of existence of a kernel is NP-complete for a general digraph. Bang-Jensen and Gutin posed an interesting problem(Problem 12.3.5) in their book [Digraphs: Theory, Algorithms and Applications, London: Springer-Verlag, 2000]: to characterize all circular digraphs with kernels. In this paper, we study the problem of existence of the kernel for several special classes of circular digraphs. Moreover, a class of counterexamples is given for the Duchet kernel conjecture(for every connected kernel-less digraph which is not an odd directed cycle, there exists an arc which can be removed and the obtained digraph is still kernel-less).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15