Self-centering characteristics of a petal-shaped capsule robot  被引量:1

Self-centering characteristics of a petal-shaped capsule robot

在线阅读下载全文

作  者:ZHANG YongShun CHEN Jun ZHANG Yu MENG Kang 

机构地区:[1]Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology [2]School of Computer Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology

出  处:《Science China(Technological Sciences)》2019年第4期619-627,共9页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.61773084,51277018,61175102)

摘  要:Based on the multiple wedge effects, a petal-shaped capsule robot(PCR) is proposed, and the self-centering phenomenon of the PCR is discovered. For investigating the self-centering characteristics, an innovative concept of the instantaneous fluid membrane(FM) thickness, along with the dynamic FM thickness, is proposed; thus a dynamic FM thickness model and a hydrodynamic pressure(HP) model are derived when the PCR axis deviates from the pipe axis under the effect of gravity. A kinematics equation during suspending process in the vertical direction and a swimming kinematics equation in axial direction are derived respectively. Four capsule robots with different eccentricities of the tiles were manufactured and tested, the theoretical and experimental results show that the HP gradient is a fundamental reason for the self-centering phenomenon. The PCR with the self-centering ability can directly avoid the contact with the bottom of the gastrointestinal(GI) tract, achieving the excellent obstacle surmounting ability in the GI complex environment with the less twisted impact on the GI tract, which has a promising application prospect in the GI diagnosis.Based on the multiple wedge effects, a petal-shaped capsule robot(PCR) is proposed, and the self-centering phenomenon of the PCR is discovered. For investigating the self-centering characteristics, an innovative concept of the instantaneous fluid membrane(FM) thickness, along with the dynamic FM thickness, is proposed; thus a dynamic FM thickness model and a hydrodynamic pressure(HP) model are derived when the PCR axis deviates from the pipe axis under the effect of gravity. A kinematics equation during suspending process in the vertical direction and a swimming kinematics equation in axial direction are derived respectively. Four capsule robots with different eccentricities of the tiles were manufactured and tested, the theoretical and experimental results show that the HP gradient is a fundamental reason for the self-centering phenomenon. The PCR with the self-centering ability can directly avoid the contact with the bottom of the gastrointestinal(GI) tract, achieving the excellent obstacle surmounting ability in the GI complex environment with the less twisted impact on the GI tract, which has a promising application prospect in the GI diagnosis.

关 键 词:petal-shaped CAPSULE robot SELF-CENTERING CHARACTERISTICS multiple WEDGE effects complete suspension phenomenon 

分 类 号:TH[机械工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象