Sharp L^p decay of oscillatory integral operators with certain homogeneous polynomial phases in several variables  

Sharp L^p decay of oscillatory integral operators with certain homogeneous polynomial phases in several variables

在线阅读下载全文

作  者:Shaozhen Xu Dunyan Yan 

机构地区:[1]School of Mathematical Sciences, University of Chinese Academy of Sciences

出  处:《Science China Mathematics》2019年第4期649-662,共14页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos. 11471309, 11271162 and 11561062)

摘  要:In this paper, we obtain the L^p decay of oscillatory integral operators T_λ with certain homogeneous polynomial phase functions of degree d in(n + n)-dimensions; we require that d > 2 n. If d/(d-n) < p < d/n,the decay is sharp and the decay rate is related to the Newton distance. For p = d/n or d/(d-n), we obtain the almost sharp decay, where "almost" means that the decay contains a log(λ) term. For otherwise, the L^p decay of T_λ is also obtained but not sharp. Finally, we provide a counterexample to show that d/(d-n) p d/n is not necessary to guarantee the sharp decay.In this paper, we obtain the L^p decay of oscillatory integral operators T_λ with certain homogeneous polynomial phase functions of degree d in(n + n)-dimensions; we require that d > 2 n. If d/(d-n) < p < d/n,the decay is sharp and the decay rate is related to the Newton distance. For p = d/n or d/(d-n), we obtain the almost sharp decay, where "almost" means that the decay contains a log(λ) term. For otherwise, the L^p decay of T_λ is also obtained but not sharp. Finally, we provide a counterexample to show that d/(d-n) p d/n is not necessary to guarantee the sharp decay.

关 键 词:OSCILLATORY integral operators SHARP L^p DECAY several variables NEWTON distance 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象