基于Neyman-Pearson准则的自适应门限干扰抑制算法  被引量:3

Adaptive Threshold Interference Suppression Algorithm Based on Neyman-Pearson Criterion

在线阅读下载全文

作  者:王桂胜[1] 任清华[1,2] 徐兵政 刘洋 WANG Gui-sheng;REN Qing-hua;XU Bing-zheng;LIU Yang(School of Information and Navigation,Air Force Engineering University,Xi’an 710077,China;CETC Key Laboratory of Aerospace Information Applications,Shijiazhuang 050081,China)

机构地区:[1]空军工程大学信息与导航学院,西安710077 [2]中国电子科技集团航天信息应用技术重点实验室,石家庄050081

出  处:《火力与指挥控制》2019年第4期12-16,共5页Fire Control & Command Control

基  金:国家自然科学基金(61401499);中国电子科技集团公司航天信息应用技术重点实验室新技术研究高校合作项目资助课题(KX162600022)

摘  要:针对制约变换域通信系统抗干扰性能的门限抑制问题,提出了基于Neyman-Pearson准则的自适应门限干扰抑制算法。从硬件实现角度,通过干扰提取模块和自适应门限比较器,建立干扰抑制系统;根据环境频谱,基于高斯分布和N-sigma原理,确定初始门限和虚警概率;提出了基于Neyman-Pearson准则的自适应门限算法,在约束条件下保证检测概率最大化。仿真结果表明,该自适应门限算法能够有效抑制多音干扰和线性调频干扰,干扰的剔除效果较好;同时具有良好的检测性能,较传统的双门限检测概率提高约3.14%的性能增益。Aiming at the interference threshold suppression problem of the anti-jamming performance in the Transform Domain Communication System,an adaptive threshold interference suppression algorithm is proposed based on Neyman-Pearson criterion. Firstly,a jamming suppression system based on the interference extraction module and the adaptive threshold comparator is proposed to build interference suppression system from the hardware realization. Then,the initial threshold and false alarm probability are determined by the Gaussian distribution and N-sigma principle according to the environment spectrum. Finally,an adaptive threshold algorithm based on Neyman-Pearson criteria is proposed to guarantee the detection probability maximization under the constraint condition. The simulation results show that the proposed adaptive threshold algorithm can effectively suppress the multi-tone interference and linear frequency interference,and it has better detection performance.Meanwhile,it improves the performance gain by about 3.14 % compared with the traditional dual-threshold detection algorithms.

关 键 词:变换域通信系统 干扰抑制 自适应门限 NEYMAN-PEARSON准则 

分 类 号:TN92[电子电信—通信与信息系统] TJ02[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象