检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:练继建[1] 徐梓曜 宾零陵[1] 徐奎 CHANHoi Yi[3] LIAN Jijian;XU Ziyao;BIN Lingling;XU Kui(State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,China;Comprehensive Development and Management Center,Ministry of Water Resources,Beijing 100053,China)
机构地区:[1]天津大学水利工程仿真与安全国家重点实验室,天津300072 [2]水利部综合开发管理中心,北京100053 [3]College of Agriculture and Life Sciences,Cornell University,ithacany14853
出 处:《水科学进展》2019年第2期282-293,共12页Advances in Water Science
基 金:国家重点研发计划资助项目(2016YFC0401905);国家自然科学基金资助项目(51809192)~~
摘 要:基于Agent的模型(Agent-based models,ABM)研究已成为水资源管理研究理论与方法的重要补充。对水资源管理ABM研究进行归纳与展望,有助于探索优化中国水资源管理体制和机制。在阐述水资源管理ABM概念及内涵的基础上,提炼出主体决策规则和互作机制两个建模核心内容,并对其方法进行了归纳分析;从流域水资源优化配置、城镇居民用水管理和灌区水资源管理3个方面,对2009—2018年主要水资源管理ABM研究进行了综述;针对当前研究的难点与不足,提出未来研究重点:①拓展复杂适应理论在水资源管理领域的应用;②加强不确定性水资源管理ABM研究;③探索基于机器学习的决策规则建模方法;④重视参数校准和结果校验及检验方法;⑤加强模型表述格式标准化进程;⑥综合权衡水资源管理ABM框架。Agent-based modeling (ABM) has enriched the theory and methods of research in water resources management. Better understanding of the state-of-the-art of ABM and its potential in the field of water resources management can promote institutional development and reform in China s water resources management system. In this paper,while ABM of water resources management (WR-ABM) is defined,its key components-agent decision rules and agent interactions-are identified and their modeling approaches are summarized. Various WR-ABMs applied in basin-scale optimal water allocation,urban household water use and agricultural water management published during the period of 2009-2018 are carefully reviewed. Future research on the use of WR-ABMs that should address the challenges and weakness in the water resources management are discussed and several research directions are recommended herein:① further expanding the use of complex adaptive system theory in the field of water resources management;② coupling ABM and water resources system models that include uncertainties;③ exploring the use of machine learning algorithms in the decision-making modeling;④ improving the methods used in the model parameter calibration,result verification and validation;⑤ using standard documentation protocol,such as the ODD protocol,for the description of models;and ⑥ achieving comprehensive and optimal balance between completeness and simplification in model design.
关 键 词:复杂适应系统 水资源系统 水资源管理 基于Agent的模型
分 类 号:TV213.4[水利工程—水文学及水资源] G353.11[文化科学—情报学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15