检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yulu Li Tao Ding Xiao Luo Zongwei Chen Xue Liu Xin Lu Kaifeng Wu
机构地区:[1]Departmental of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China [2]State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute oj Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
出 处:《Nano Research》2019年第3期619-623,共5页纳米研究(英文版)
基 金:We gratefully acknowledge financial supports from the Ministry;Science and Technology of China (No. 2018YFA028703);the National Natural Science Foundation of China (No. 21773239).
摘 要:Auger recombination has been a long?standing obstacle to many prospective applications of colloidal quantum dots (QDs) ranging from lasing, light-emitting diodes to bio-labeling. As such, understanding the physical underpinnings and scaling laws for Auger recombination is essential to these applications. Previous studies of biexciton Auger recombination in various QDs established a universal scaling of biexciton lifetime (rxx) with QD volume (V):τxx =γV. However, recent measurements on perovskite nanocrystals (NCs), an emerging class of enablers for light harvest!ng and emitting applications, showed significant deviations from this universal scaling law, likely because the measured NCs are weakly-confined and also have relatively broad size-distributions. Here we study biexciton Auger recombination in mono-dispersed (size distributions within 1.7%—9.0%), quantunvconfined CsPbBr3 NCs (with confinement energy up to 410 meV) synthesized using a latest approach based on thermodynamic equilibrium control. Our measurements clearly reproduce the volume-scaling of τxx in confined CsPbBb QDs. However, the scaling factor γ(0.085 ± 0.001 ps/nm^3) is one order of magnitude lower than that reported for CdSe and PbSe QDs (1.00 ± 0.05 ps/nm^3), suggest!ng unique mechanisms enhancing Auger recombination rate in perovskite NCs.
关 键 词:PEROVSKITE NANOCRYSTALS AUGER recombination BIEXCITON volume-scaling ultrafast spectroscopy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.174.90