机构地区:[1]四川大学制造科学与工程学院,四川成都610065 [2]四川大学锦江学院,四川彭山620860 [3]西华大学机械工程学院,四川成都610039
出 处:《工程科学与技术》2019年第3期205-211,共7页Advanced Engineering Sciences
基 金:国家自然科学基金项目(51575456)
摘 要:将鼓形蜗杆传动装置设计为机器人减速器并应用于机器人的转动关节,有利于机器人减速器的国产化。以变齿厚内齿轮齿面为工具齿面,通过分析鼓形蜗杆副的内啮合运动规律,建立6个标架。通过内齿轮上的辅助标架和工作标架,确定蜗轮转动角度、蜗杆转动角度及工作角度之间的关系。根据啮合原理,建立鼓型蜗杆副的啮合方程、二类界限曲线方程及一类界限曲线方程,再通过MATLAB R2013b绘制图像。依据U10PLUS KV170型电机参数,确定鼓型蜗杆传动装置的设计参数,通过MATLAB绘制蜗杆齿面螺旋线并输出ibl文件,再通过Creo2.0绘制鼓形蜗杆传动装置的3维模型。研究发现:1)变齿厚内齿轮具有对称的楔形轮齿,在安装过程中可调节内齿轮的相对轴向位置,实现内齿轮与蜗杆在Creo虚拟环境下无干涉装配。2)鼓形蜗杆副中心距为100 mm,与中心距为220 mm的相同设计参数的环面蜗杆副相比,鼓形蜗杆副的中心距减小,结构更加紧凑。3)内齿轮设计宽度为110 mm,依据鼓型蜗杆副的接触线在蜗轮甲、乙两齿面的分布范围,确定内齿轮的工作宽度为75 mm。4)分析一类界限曲线及蜗杆齿根线的空间位置关系,一界曲线分布在蜗杆齿根内部,确定无根切发生。5)结合传统设计方法,设计具有驱动、传动及支撑一体化结构的变齿厚内齿轮平面包络外转子鼓形蜗杆传动装置。在驱动方面,电机安装在蜗杆内部,实现蜗杆与电机一体化;在传动方面,通过调整内齿轮的相对轴向位置,实现蜗杆副的侧隙调整和磨损补偿;在支撑方面,采用支撑轴进行定位安装,无需安装箱体,实现装置结构的简化。结果表明:内齿轮轮齿的对称楔形结构有利于蜗杆副的安装与调整,可实现蜗杆副的侧隙调整和磨损补偿,提高蜗杆传动副利用率;依据工作宽度设计内齿轮,有利于降低内齿轮制造成本;通过对蜗杆副的接触线、二类界The drum-worm transmission device was designed as a robot reducer applied to the robot joint, which benefits the domestic localization of robot reducer. Surfaces of the beveloid internal gear tooth were used as the tool surfaces. By analyzing the internal meshing motion of the drum-worm pair, 6 frames were established. Relationships between the worm-wheel’s rotation angle, the worm’s rotation angle and working angle were determined by the auxiliary frame and the working frame on the internal gear. According to meshing principles, equations of the drum-worm pair’s meshing, second limit curve and first limit curve were established and then drawn by MATLAB R2013 b. According to parameters of the U10 PLUS KV170 motor, design parameters of the drum-worm transmission device were determined. Spirals of the worm-tooth’s surfaces were drawn by MATLAB to output ibl files, and then 3D-models of the drum-worm transmission device were drawn by Creo 2.0. The assemble of the internal gear and the worm in the Creo simulation environment without interference-fit was realized by adjusting the relative axial position of the beveloid internal gear with symmetrical wedge teeth. Comparing with the 220 mm-center-distance toroidal worm pair with same design parameters, the center distance of the drum-worm pair was reduced to 100 mm, which indicated that the drum-worm pair was more compact. According to distributions of the drum-worm pair’s contact lines on both surfaces of a tooth, the internal gear’s width was reduced from the 110 mm designwidth to the 75 mm working width. Analyzing relative positions between the worm pair’s first limit curve and tooth-root lines, the non-undercutting was determined by the first curve distributed inside the worm’s tooth-root. Combined with traditional design methods, the beveloid internal gear plane enveloping external-rotor drum-worm transmission device with an integrated structure of drive, transmission and support was designed.In terms of driving, the motor was installed inside the w
分 类 号:TH132.44[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...