基于多段落排序的机器阅读理解研究  被引量:3

Machine reading comprehension based on multi-passage ranking

在线阅读下载全文

作  者:万静[1] 郭雅志 WAN Jing;GUO YaZhi(College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China)

机构地区:[1]北京化工大学信息科学与技术学院,北京100029

出  处:《北京化工大学学报(自然科学版)》2019年第3期93-98,共6页Journal of Beijing University of Chemical Technology(Natural Science Edition)

基  金:国家自然科学基金(51577006)

摘  要:针对多段落的机器阅读理解问题,在双向注意力流(BiDAF)模型的基础上,结合双向长短期记忆网络(BiLSTM)和self-attention机制构建了多段落排序BiDAF(PR-BiDAF)模型,利用该模型定位答案所在的段落,然后在预测段落中寻找最终答案的始末位置。实验结果表明,相较于BiDAF模型,本文提出的PR-BiDAF模型的段落选择正确率、BLEU4指标及ROUGE-L指标分别提高了约13%、6%和4%。To solve the problem of machine reading comprehension of multi-paragraphs, we propose a model named PR-BiDAF which uses BiLSTM and self-attention based on the bi-directional attention flow (BiDAF) model. The model is used to locate the paragraph in which the answer is located, and then to find the beginning and end of the final answer in the prediction paragraph. Experiments show that, compared with the BiDAF model, the paragraph selection accuracy, BLEU4 index and ROUGE-L index of the PR-BiDAF model proposed in this paper are in-creased by about 13%, 6% and 4% respectively.

关 键 词:机器阅读理解 双向注意力流(BiDAF)模型 self-attention机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象