检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩彦岭[1] 李鹏 张云[1] 徐利军[1] 王静[1] HAN Yanling;LI Peng;ZHANG Yun;XU Lijun;WANG Jing(College of Information Technology,Shanghai Ocean University,Shanghai 201306,China)
出 处:《遥感信息》2019年第2期15-22,共8页Remote Sensing Information
基 金:国家自然科学基金(41376178;41401489;41506213);上海科学技术委员会(11510501300);上海高校青年学者基金(zzhy13033);上海海洋大学科技发展专项资金(a2-0209-14-200070)
摘 要:针对海冰遥感图像分类问题中标签样本获取困难、标注成本较高导致海冰分类精度难以提高的问题,提出了一种主动学习与半监督学习相结合的方式用于海冰分类。首先,利用基于不确定性准则和多样性准则进行主动学习方法,选择一批最具信息量的标签样本建立标签样本集;其次,充分利用大量的未标签样本信息,并融合主动学习采样的思想选出部分具有代表性且分布在支持向量周边的半标签样本,建立半监督分类模型;最后,将主动学习方法和直推式支持向量机相结合构建分类模型实现海冰图像分类。实验结果表明,相对于其他方法,该方法在只有少量标签样本的情况下,可以获得更高的分类精度,该方式可有效解决遥感海冰分类问题。Aiming at the problem of difficulty in improving the classification accuracy of sea ice caused by the difficulty of obtaining labeled samples and high labeling cost in the classification of sea ice remote sensing images,this paper puts forward a method of combining active learning (AL) with semi-supervised learning (SSL) for the classification of sea ice.Firstly,this paper adopts the method of active learning based on the criterion of uncertainty and diversity and chooses a batch of most informative labeled samples to establish a set of labeled samples.Secondly,it makes the best of a great deal of unlabeled sample information,picks out a part of representative unlabeled samples distributed around support vectors (SVs) according to the idea of active learning sampling and builds a semi-supervised classification model.Finally,it combines the method of AL with transductive support vector machine to build a classification model and realize the classification of sea ice images.Experimental results show that the method suggested in this paper can achieve higher classification accuracy than other methods in the case of only a small number of labeled samples.The method can be effectively used to solve the classification of remote sensing sea ice.
关 键 词:海冰 主动学习 半监督学习 直推式支持向量机 分类
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.45.133