A revised jump-diffusion and rotation-diffusion model  

A revised jump-diffusion and rotation-diffusion model

在线阅读下载全文

作  者:Hua Li Yu-Hang Chen Bin-Ze Tang 李华;陈昱沆;唐宾泽(Department of Physics, Jinan University)

机构地区:[1]Department of Physics, Jinan University

出  处:《Chinese Physics B》2019年第5期216-221,共6页中国物理B(英文版)

摘  要:Quasi-elastic neutron scattering(QENS) has many applications that are directly related to the development of highperformance functional materials and biological macromolecules, especially those containing some water. The analysis method of QENS spectra data is important to obtain parameters that can explain the structure of materials and the dynamics of water. In this paper, we present a revised jump-diffusion and rotation-diffusion model(rJRM) used for QENS spectra data analysis. By the rJRM, the QENS spectra from a pure magnesium-silicate-hydrate(MSH) sample are fitted well for the Q range from 0.3 ^(-1) to 1.9 ^(-1) and temperatures from 210 K up to 280 K. The fitted parameters can be divided into two kinds. The first kind describes the structure of the MSH sample, including the ratio of immobile water(or bound water) C and the confining radius of mobile water a_0. The second kind describes the dynamics of confined water in pores contained in the MSH sample, including the translational diffusion coefficient Dt, the average translational residence timeτ0, the rotational diffusion coefficient D_r, and the mean squared displacement(MSD) u^2. The r JRM is a new practical method suitable to fit QENS spectra from porous materials, where hydrogen atoms appear in both solid and liquid phases.Quasi-elastic neutron scattering(QENS) has many applications that are directly related to the development of highperformance functional materials and biological macromolecules, especially those containing some water. The analysis method of QENS spectra data is important to obtain parameters that can explain the structure of materials and the dynamics of water. In this paper, we present a revised jump-diffusion and rotation-diffusion model(rJRM) used for QENS spectra data analysis. By the rJRM, the QENS spectra from a pure magnesium-silicate-hydrate(MSH) sample are fitted well for the Q range from 0.3 ^(-1) to 1.9 ^(-1) and temperatures from 210 K up to 280 K. The fitted parameters can be divided into two kinds. The first kind describes the structure of the MSH sample, including the ratio of immobile water(or bound water) C and the confining radius of mobile water a_0. The second kind describes the dynamics of confined water in pores contained in the MSH sample, including the translational diffusion coefficient Dt, the average translational residence timeτ0, the rotational diffusion coefficient D_r, and the mean squared displacement(MSD) u^2. The r JRM is a new practical method suitable to fit QENS spectra from porous materials, where hydrogen atoms appear in both solid and liquid phases.

关 键 词:revised JUMP-DIFFUSION and rotation-diffusion model (rJRM) data analysis of quasi-elastic neutron scattering (QENS) spectra dynamics of water magnesium-silicate-hydrate (MSH) samples 

分 类 号:O4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象