Controlling multiphoton excited energy transfer from Tm^(3+) to Yb^(3+) ions by a phase-shaped femtosecond laser field  被引量:1

Controlling multiphoton excited energy transfer from Tm^(3+) to Yb^(3+) ions by a phase-shaped femtosecond laser field

在线阅读下载全文

作  者:YE ZHENG LIANZHONG DENG JIANPING LI TIANQING JIA JIANRONG QIU ZHENRONG SUN SHIAN ZHANG 

机构地区:[1]State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University [2]State Key Laboratory of Silicon Materials, Zhejiang University [3]Collaborative Innovation Center of Extreme Optics, Shanxi University

出  处:《Photonics Research》2019年第4期486-492,共7页光子学研究(英文版)

基  金:National Natural Science Foundation of China(NSFC)(11727810,11774094,61720106009,91850202);Shanghai Minhang Science and Technology Commission(16520721200,17ZR146900)

摘  要:The ability to control the energy transfer in rare-earth ion-doped luminescent materials is very important for various related application areas such as color display, bio-labeling, and new light sources. Here, a phase-shaped femtosecond laser field is first proposed to control the transfer of multiphoton excited energy from Tm^(3+) to Yb^(3+) ions in co-doped glass ceramics. Tm^(3+) ions are first sensitized by femtosecond laser-induced multiphoton absorption, and then a highly efficient energy transfer occurs between the highly excited state Tm^(3+) sensitizers and the ground-state Yb^(3+) activators. The laser peak intensity and polarization dependences of the laser-induced luminescence intensities are shown to serve as proof of the multiphoton excited energy transfer pathway.The efficiency of the multiphoton excited energy transfer can be efficiently enhanced or completely suppressed by optimizing the spectral phase of the femtosecond laser with a feedback control strategy based on a genetic algorithm. A(1+2) resonance-mediated three-photon excitation model is presented to explain the experimental observations. This study provides a new way to induce and control the energy transfer in rare-earth ion-doped luminescent materials, and should have a positive contribution to the development of related applications.The ability to control the energy transfer in rare-earth ion-doped luminescent materials is very important for various related application areas such as color display, bio-labeling, and new light sources. Here, a phase-shaped femtosecond laser field is first proposed to control the transfer of multiphoton excited energy from Tm^(3+) to Yb^(3+) ions in co-doped glass ceramics. Tm^(3+) ions are first sensitized by femtosecond laser-induced multiphoton absorption, and then a highly efficient energy transfer occurs between the highly excited state Tm^(3+) sensitizers and the ground-state Yb^(3+) activators. The laser peak intensity and polarization dependences of the laser-induced luminescence intensities are shown to serve as proof of the multiphoton excited energy transfer pathway.The efficiency of the multiphoton excited energy transfer can be efficiently enhanced or completely suppressed by optimizing the spectral phase of the femtosecond laser with a feedback control strategy based on a genetic algorithm. A(1+2) resonance-mediated three-photon excitation model is presented to explain the experimental observations. This study provides a new way to induce and control the energy transfer in rare-earth ion-doped luminescent materials, and should have a positive contribution to the development of related applications.

关 键 词:control the energy RARE-EARTH ion-doped SHOULD have 

分 类 号:O4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象