Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole  被引量:1

Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole

在线阅读下载全文

作  者:Xue-Min Dai Hong Gao Ran Zhang Zhi-Jun Du Tong-Fei Shi Xiang-Ling Ji Xue-Peng Qiu Yong-Feng Men 

机构地区:[1]State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences [2]Polymer Composites Engineering Laboratory,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences [3]University of Chinese Academy of Sciences [4]China Academy of Space Technology

出  处:《Chinese Journal of Polymer Science》2019年第5期478-492,共15页高分子科学(英文版)

基  金:financially supported by the National Key R&D Program of China(No.2017YFB0308300);the National Basic Research Program of China(No.2014CB643603)

摘  要:A series of polyamic acid copolymers(co-PAAs) with para-hydroxyl groups was synthesized using two diamine monomers,namely p-phenylenediamine(p-PDA) and 5-amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole(m-pHBOA), of different molar ratios through copolymerization with 3,3′,4,4′-biphenyltetracarboxylic dianhydride(BPDA) in N,N-dimethyacetamine(DMAc). The co-PAA solutions were used to fabricate fibers by dry-jet wet spinning, and thermal imidization was conducted to obtain polyimide copolymer(coPI) fibers. The effects of the m-pHBOA moiety on molecular packing and physical properties of the prepared fibers were investigated.Fourier transform infrared(FTIR) spectroscopic results confirmed that intra/intermolecular hydrogen bonds originated from the hydroxyl group and the nitrogen atom of the benzoxazole group and/or the hydroxyl group and the oxygen atom of the carbonyl group of cyclic imide. As-prepared PI fibers displayed homogenous and smooth surface and uniform diameter. The glass transition temperatures(Tgs) of PI fibers were within 311-337 °C. The polyimide fibers showed 5% weight loss temperature(T5%) at above 510 °C in air. Twodimensional wide-angle X-ray diffraction(WXRD) patterns indicated that the homo-PI and co-PI fibers presented regularly arranged polymer chains along the fiber axial direction. The ordered molecular packing along the transversal direction was destroyed by introducing the m-pHBOA moiety. Moreover, the crystallinity and orientation factors increased with increasing draw ratio. Small-angle X-ray scattering(SAXS) results showed that it is beneficial to reduce defects in the fibers by increasing the draw ratio. The resultant PI fibers exhibited excellent mechanical properties with fracture strength and initial modulus of 2.48 and 89.73 GPa, respectively, when the molar ratio of p-PDA/m-pHBOA was 5/5 and the draw ratio was 3.0.A series of polyamic acid copolymers(co-PAAs) with para-hydroxyl groups was synthesized using two diamine monomers,namely p-phenylenediamine(p-PDA) and 5-amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole(m-pHBOA), of different molar ratios through copolymerization with 3,3′,4,4′-biphenyltetracarboxylic dianhydride(BPDA) in N,N-dimethyacetamine(DMAc). The co-PAA solutions were used to fabricate fibers by dry-jet wet spinning, and thermal imidization was conducted to obtain polyimide copolymer(coPI) fibers. The effects of the m-pHBOA moiety on molecular packing and physical properties of the prepared fibers were investigated.Fourier transform infrared(FTIR) spectroscopic results confirmed that intra/intermolecular hydrogen bonds originated from the hydroxyl group and the nitrogen atom of the benzoxazole group and/or the hydroxyl group and the oxygen atom of the carbonyl group of cyclic imide. As-prepared PI fibers displayed homogenous and smooth surface and uniform diameter. The glass transition temperatures(Tgs) of PI fibers were within 311-337 °C. The polyimide fibers showed 5% weight loss temperature(T5%) at above 510 °C in air. Twodimensional wide-angle X-ray diffraction(WXRD) patterns indicated that the homo-PI and co-PI fibers presented regularly arranged polymer chains along the fiber axial direction. The ordered molecular packing along the transversal direction was destroyed by introducing the m-pHBOA moiety. Moreover, the crystallinity and orientation factors increased with increasing draw ratio. Small-angle X-ray scattering(SAXS) results showed that it is beneficial to reduce defects in the fibers by increasing the draw ratio. The resultant PI fibers exhibited excellent mechanical properties with fracture strength and initial modulus of 2.48 and 89.73 GPa, respectively, when the molar ratio of p-PDA/m-pHBOA was 5/5 and the draw ratio was 3.0.

关 键 词:POLYIMIDE fiber Phenylenebenzoxazole HYDROXYL group Hydrogen bonding 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象