Dual-wavelength bidirectional pumped high-power Raman fiber laser  被引量:5

Dual-wavelength bidirectional pumped high-power Raman fiber laser

在线阅读下载全文

作  者:Zehui Wang Qirong Xiao Yusheng Huang Jiading Tian Dan Li Ping Yan Mali Gong 

机构地区:[1]State Key Laboratory of Precision Measurement Technology and Instruments & Key Laboratory of Photonics Control Technology of the Ministry of Education, Tsinghua University

出  处:《High Power Laser Science and Engineering》2019年第1期38-46,共9页高功率激光科学与工程(英文版)

基  金:supported in part by the National Natural Science Foundation of China (Nos. 61675114 and 61875103);the Tsinghua University Initiative Scientific Research Program (No. 20151080709)

摘  要:In this paper, we reported both the experimental demonstration and theoretical analysis of a Raman fiber laser based on a master oscillator–power amplifier configuration. The Raman fiber laser adopted the dual-wavelength bidirectional pumping configuration, utilizing 976 nm laser diodes and 1018 nm fiber lasers as the pump sources. A 60-m-long25/400 μm ytterbium-doped fiber was used to convert the power from 1070 to 1124 nm, realizing a maximum power output of 3.7 kW with a 3 dB spectral width of 6.8 nm. Moreover, we developed a multi-frequency model taking into consideration the Raman gain spectrum and amplified spontaneous emission. The calculated spectral broadening of both the forward and backward laser was in good agreement with the experimental results. Finally, a 1.5 kW, 1183 nm second-order Raman fiber laser was further experimentally demonstrated by the addition of a 70-m-long germaniumdoped passive fiber.In this paper, we reported both the experimental demonstration and theoretical analysis of a Raman fiber laser based on a master oscillator–power amplifier configuration. The Raman fiber laser adopted the dual-wavelength bidirectional pumping configuration, utilizing 976 nm laser diodes and 1018 nm fiber lasers as the pump sources. A 60-m-long25/400 μm ytterbium-doped fiber was used to convert the power from 1070 to 1124 nm, realizing a maximum power output of 3.7 kW with a 3 dB spectral width of 6.8 nm. Moreover, we developed a multi-frequency model taking into consideration the Raman gain spectrum and amplified spontaneous emission. The calculated spectral broadening of both the forward and backward laser was in good agreement with the experimental results. Finally, a 1.5 kW, 1183 nm second-order Raman fiber laser was further experimentally demonstrated by the addition of a 70-m-long germaniumdoped passive fiber.

关 键 词:FIBER LASER FIBER optics AMPLIFIERS and oscillators Raman LASER 

分 类 号:O4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象