检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zehui Wang Qirong Xiao Yusheng Huang Jiading Tian Dan Li Ping Yan Mali Gong
出 处:《High Power Laser Science and Engineering》2019年第1期38-46,共9页高功率激光科学与工程(英文版)
基 金:supported in part by the National Natural Science Foundation of China (Nos. 61675114 and 61875103);the Tsinghua University Initiative Scientific Research Program (No. 20151080709)
摘 要:In this paper, we reported both the experimental demonstration and theoretical analysis of a Raman fiber laser based on a master oscillator–power amplifier configuration. The Raman fiber laser adopted the dual-wavelength bidirectional pumping configuration, utilizing 976 nm laser diodes and 1018 nm fiber lasers as the pump sources. A 60-m-long25/400 μm ytterbium-doped fiber was used to convert the power from 1070 to 1124 nm, realizing a maximum power output of 3.7 kW with a 3 dB spectral width of 6.8 nm. Moreover, we developed a multi-frequency model taking into consideration the Raman gain spectrum and amplified spontaneous emission. The calculated spectral broadening of both the forward and backward laser was in good agreement with the experimental results. Finally, a 1.5 kW, 1183 nm second-order Raman fiber laser was further experimentally demonstrated by the addition of a 70-m-long germaniumdoped passive fiber.In this paper, we reported both the experimental demonstration and theoretical analysis of a Raman fiber laser based on a master oscillator–power amplifier configuration. The Raman fiber laser adopted the dual-wavelength bidirectional pumping configuration, utilizing 976 nm laser diodes and 1018 nm fiber lasers as the pump sources. A 60-m-long25/400 μm ytterbium-doped fiber was used to convert the power from 1070 to 1124 nm, realizing a maximum power output of 3.7 kW with a 3 dB spectral width of 6.8 nm. Moreover, we developed a multi-frequency model taking into consideration the Raman gain spectrum and amplified spontaneous emission. The calculated spectral broadening of both the forward and backward laser was in good agreement with the experimental results. Finally, a 1.5 kW, 1183 nm second-order Raman fiber laser was further experimentally demonstrated by the addition of a 70-m-long germaniumdoped passive fiber.
关 键 词:FIBER LASER FIBER optics AMPLIFIERS and oscillators Raman LASER
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15