基于TURBO模型、风险矩阵法和Borda序值法识别某院血必净注射液不良反应的高风险人群  

Identification of high risk population for adverse reactions of xuebijing injection based on TURBO model, risk Matrix Method and Borda ordinary value method

在线阅读下载全文

作  者:林哲人[1] 胡媛媛[1] 陈曼[1] 涂娟[1] 宋欢[1] 黄倩[1] LIN Zhe-ren;HU Yuan-yuan;CHEN Man(Wuhan Hospital of Traditional Chinese Medicine,Hubei Wuhan 430014,China)

机构地区:[1]武汉市中医医院综合药学部,武汉430014

出  处:《中国处方药》2019年第5期3-4,共2页Journal of China Prescription Drug

基  金:武汉市卫生和计划生育委员会科研项目(WZ17D08)

摘  要:目的利用TURBO模型、风险矩阵法和Borda序值法,筛选出发生不良反应的高风险人群。方法选取某院2015~2017年上报国家药物不良反应监测中心25例血必净注射液不良反应,以患者年龄和性别作为特征,分为A-L共12个组,将不良反应发生率和不良反应严重程度指数作为风险评价要素,运用风险矩阵和Borda序值法,将12个组按照风险高低进行排序,得到高风险人群。结果特征人群组风险大小排序为:J> B> L> G> K> C> E> A> H> D> F> I,"51~60岁女性"风险最高,其次为"31~40岁男性"。结论利用TURBO模型、风险矩阵法和Borda序值法,可以鲜明而直观的表达风险高低,该方法也可运用到其他类型药物不良反应的风险评价中。Objective To screen high-risk population with adverse reactions of xuebijing injection by using TURBO model,risk matrix method and Borda ordinal value method.Methods Twenty-five cases of adverse drug reactions of Xuebijing injection reported to the National Adverse Drug Reaction Monitoring Center in our hospital from 2015 to 2017 were divided into 12 groups with age and sex as characteristics.We taked the incidence of adverse reactions and the severity index of adverse reactions as risk assessment factors,using the risk matrix and Borda ordinal value method to find out the high-risk population.Results The risk ranking of the characteristic population group was J > B > L > G > K > C > E > A > H > D > F > I.The risk of "51 ~ 60 year old female" was the highest,followed by "31 ~ 40 year old male".Conclution Using TURBO model,risk matrix method and Borda ordinal value method,we can clearly and intuitively express the level of risk.This method can also be applied to the risk assessment of adverse reactions of other types of drugs.

关 键 词:TURBO模型 风险矩阵 Borda序值 不良反应 风险人群 

分 类 号:R286[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象