主动式电流体微槽平板热管的理论分析  

Theoretical Analysis of Active Mini-Groove Flat Heat Pipe Based on Electrohydrodynamics

在线阅读下载全文

作  者:辛菲[1] 马挺[1] 王秋旺[1] XIN Fei;MA Ting;WANG Qiu-Wang(Key Labonitory of Thernio-Fluid Science and Engineering, MOE, Xi 'an Jiaotong University, Xi'an 710049, China)

机构地区:[1]西安交通大学热流科学与工程教育部重点实验室,西安710049

出  处:《工程热物理学报》2019年第5期1120-1125,共6页Journal of Engineering Thermophysics

基  金:国家自然科学基金重点项目(No.51536007);国家自然科学基金面上项目(No.51676155)

摘  要:毛细极限常常制约了传统微型平板热管对高热流密度电子器件的冷却。本文采用结构简单、能耗低的电流体力学强化技术与微槽平板热管相结合,建立了一维电流体微槽平板热管稳态轴向流动传热的数学模型,研究了在不同电场强度下工质压力、流速等沿轴向的分布情况.数学分析表明,在本文的研究条件下,当场强为13 kV cm^(-1)时,微型热管的最大传热极限是无电场作用时的11.2倍.微槽平板热管施加电场可加强液体从冷凝段到蒸发段的回流,减少热管对毛细压差的需求,大大提高了热管的传热能力,有助于实现高热流密度电子器件的快速冷却.The capillary limit tends to restrict the cooling of high heat flux electronic devices by traditional mini flat heat pipe. Electrohydrodynamics, with simple structure and little energy consumption, is an effective strengthening heat transfer technology. This paper sets up one dimensional axial steady fluid flow and heat transfer mathematical model of mini-groove flat heat pipe based on electrohydrodynamics, aiming at studying the axial distribution of working fluid pressure, velocity,etc. under different electrical field intensities. According to mathematical analysis, the maximum heat transfer limit of mini flat heat pipe under field intensity 13 kV·cm-1 is 11.1 times of that without electrical field intensity under the condition of this paper. Applying electrical field to mini-groove flat heat pipe can enhance the liquid backflow from condensation section to evaporation section, decrease the requirement of capillary pressure difference for heat pipe and obviously improve the heat transfer capability of heat pipe, which can contribute to realizing the rapid cooling of high heat flux electronic devices.

关 键 词:微槽平板热管 数学模型 电流体力学EHD 场强 传热能力 

分 类 号:TK124[动力工程及工程热物理—工程热物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象