检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘莉[1] 姚京京 李俊 陈先来[3] 周宇葵[1] LIU Li;YAO Jingjing;LI Jun;CHEN Xianlai;ZHOU Yukui(School of Life Science,Central South University,Changsha 410013,China;Xiangya School of Stomatology,Central South University,Changsha 410008,China;Institute of Information Security and Big Data,Central South University,Changsha 410083,China)
机构地区:[1]中南大学生命科学学院,湖南长沙410013 [2]中南大学湘雅口腔医学院,湖南长沙410008 [3]中南大学信息安全与大数据研究院,湖南长沙410083
出 处:《中国医学物理学杂志》2019年第5期614-620,共7页Chinese Journal of Medical Physics
基 金:国家重点研发计划(2016YFC0901705)
摘 要:目的:对高血压患者电子病历病案首页进行分析挖掘,揭示其中疾病诊断之间的关系。方法:以共词分析为基础,通过Python语言构建分析模块,采用Gephi复杂网络分析软件对结果进行展示。结果:基于3 632条电子病历记录,构建包含疾病诊断节点1 029个,共现关系边12 479条的疾病诊断共现网络,发现共现关系较强的疾病诊断集群。结论:从多角度、多层面对疾病诊断共现网络进行解读,并以可视化图谱的方式展示,揭示疾病诊断之间关系,为下一步构建更加完善的疾病图谱奠定基础。Objective To analyze and mine the electronic medical record home page of patients with hypertension, and to reveal the relationships among disease diagnoses. Methods Based on the co-word analysis, the analysis module was established by Python language, and the analysis results were displayed by Gephi complex network analysis software. Results Based on 3 362 electronic medical records, a disease diagnosis co-occurrence network containing 1 029 disease diagnosis nodes and 12 479 co-occurrence relationship lines was constructed, and a disease diagnosis cluster with strong co-occurrence relationship was found. Conclusion The disease diagnosis co-occurrence network can be interpreted from multi-angle and multi-level, and can be displayed in a visual map to reveal the relationships among disease diagnoses, laying a foundation for the further establishment of a more complete disease map.
分 类 号:TP391[自动化与计算机技术—计算机应用技术] R312[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15