检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王雯夫 陈子豪 孙奇 张毅[1,2] WANG Wenfu;CHEN Zihao;SUN Qi;ZHANG Yi(Institute of Remote Sensing and Geographical Information System, Peking University, Beijing 100871;Beijing Key Laboratory of Spatial Information Integration and Its Applications, Beijing 100871)
机构地区:[1]北京大学遥感与地理信息系统研究所,北京100871 [2]空间信息集成与3S工程应用北京市重点实验室,北京100871
出 处:《北京大学学报(自然科学版)》2019年第3期473-481,共9页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:国家重点研发计划项目(2018YFB0505000)资助
摘 要:提出以面状旅游区为分析单元的新方法。首先从海量社交媒体数据中提取个体旅游时空行为,然后基于行为计算城市的旅游区结构,最后分析旅游区的游客行为特征和游客客源特征,以旅游区为节点、旅游区之间的旅游流为关系构建旅游区网络,并分析其结构特征。在对苏州市的实证研究中,基于行为计算得到7个旅游区,这一结果与苏州市旅游规划中的"一核一带三区"空间格局基本上一致。对苏州市旅游区的特征分析表明:1)古城和古镇是苏州市旅游的核心区域,游客分散且距离远;2)苏州城区及附近的旅游区更能吸引跨旅游区的旅游行为;3)苏州旅游区网络已经形成多中心结构。通过实证研究,验证了基于社交媒体数据计算城市旅游区结构和以面状旅游区为分析单元研究城市旅游的有效性,为城市旅游研究提供新思路。A new method is proposed using area feature-tourism districts as analysis unit. Firstly, spatial-temporal behaviors of individual tourists are extracted from social media data. Secondly, the city’s tourism districts are extracted based on spatial-temporal behaviors. Finally, tourism districts are analyzed by 3 kinds of features - ourist activity features, tourist origin features and the structure features of tourism district network using tourism districts as nodes and tourist flow as edges. In the empirical research of Suzhou, 7 tourism districts are extracted based on spatial-temporal behaviors. The spatial structure of tourism districts is generally the same as "1-core-1-corridor-3-district" pattern in Suzhou tourism planning. The feature analysis of Suzhou tourism districts indicates that the Ancient City Tourism District and the Ancient Town Tourism District are the core tourism districts, which attracts tourists from various and distant origins. The tourism districts in and near Suzhou urban area attract more tourists.Suzhou tourism districts have already formed into a multi-core structure. This research shows the effectiveness of extracting city’s tourism districts based on social media data and researching city’s tourism with tourism districts as analysis unit, providing a new approach for research on urban tourism.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222