杭州湾滨海湿地生态安全动态变化及趋势预测  被引量:11

Ecological security dynamics and trend forecast of coastal wetlands in Hangzhou Bay

在线阅读下载全文

作  者:李楠 李龙伟[2] 陆灯盛 张银龙 吴明 LI Nan;LI Longwei;LU Dengsheng;ZHANG Yinlong;WU Ming(Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037,China;Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China;Institute of Subtropical Forestry Research, Chinese Academy of Forestry, Hangzhou 311400, China)

机构地区:[1]南京林业大学南方现代林业协同创新中心南京林业大学生物与环境学院,江苏南京210037 [2]浙江农林大学浙江省森林生态系统碳循环与固碳减排重点实验室,浙江杭州311300 [3]福建师范大学地理科学学院,福建福州350007 [4]中国林业科学研究院亚热带林业研究所,浙江杭州311400

出  处:《南京林业大学学报(自然科学版)》2019年第3期107-115,共9页Journal of Nanjing Forestry University:Natural Sciences Edition

基  金:浙江省省院合作林业科技项目(2018SY03);江苏省研究生科研与实践创新计划项目(KYCX17_0819);江苏高校优势学科建设工程资助项目(PAPD);南京林业大学博士学位论文创新基金项目

摘  要:【目的】受人类活动干扰,滨海湿地日益突出的生态问题已经对区域可持续发展构成了严重威胁,明确滨海湿地的生态安全状态及变化趋势至关重要。笔者对杭州湾滨海湿地的生态安全状况进行评估和发展趋势分析预测,为湿地的有效管理、区域可持续发展,以及滨海湿地生态安全趋势的准确预测提供参考。【方法】基于DPSIR概念模型,从驱动力、压力、状态、影响和响应等5个层面选取46个相关指标构建杭州湾滨海湿地生态安全评价体系。基于遥感数据、湿地监测数据、地理辅助数据、社会经济等统计数据获取各指标数据。分别对正负向指标进行标准化处理,使用熵值法计算各指标的权重,建立加权判断矩阵,确定各指标的正负理想解。根据各指标与理想解之间的距离,计算贴近度,即生态安全值,并划分为安全、比较安全、预警、脆弱、极度脆弱等5个等级。分别计算2000、2005、2010及2015年的生态安全值,使用灰色预测模型GM(1,1)对2020年杭州湾滨海湿地的生态安全值进行预测分析。【结果】根据熵值法改进的TOPSIS模型计算得到杭州湾滨海湿地在2000、2005、2010和2015年的生态安全指数分别为0.413、0.382、0.287和0.582,安全等级由预警等级恶化到脆弱等级,又恢复到预警等级,呈下降后上升趋势。熵值法计算的指标权重表明,湿地保护率、景观多样性指数、生活污水排放量、大气调节、长效机制构建、固碳、文教科研、人口增长率、旅游休闲、人均GDP、工业废气排放量和水源涵养是影响杭州湾滨海湿地生态安全的主要因素。杭州湾滨海湿地的DPSIR模型中,"驱动力"一直处于预警状况,但其面临的"压力"越来越大,从安全状态恶化到极度脆弱状态,"状态"不容乐观,从比较安全恶化到极度脆弱后好转,处于脆弱状态,"影响"基本处于预警状态,当地对湿地生态安全的"响应"从�【Objective】 Due to constant anthropogenic disturbance, coastal wetlands of China have been suffering from increasing ecological problems, posing a serious threat to regional sustainable development. It is crucial to clarify the ecological security status and trends of coastal wetlands. For effective management of wetlands and regional sustainable development, the ecological security status of the coastal wetlands in Hangzhou Bay was evaluated and predicted.【Method】Based on the driving force-pressure-state-impact-response(DPSIR) conceptual model, 46 indicators reflecting the ecological security of the Hangzhou Bay coastal wetlands were selected to develop the ecological security assessment system. Then, these indicators were quantified by remote sensing data, wetland observational data, geographic ancillary data, and socioeconomic statistics. The indicators were normalized as appropriate and the weight of indicators was calculated by entropy methods. A weighted judgment matrix was established to calculate the positive and negative ideal solutions of each indicator. According to the distance between an indicator and the ideal solution, the closeness C_i(i.e., the ecological security value) was calculated and classified into five levels: extremely vulnerable, vulnerable, warning, relatively safe, and safe. The ecological safety values of 2000, 2005, 2010 and 2015 were calculated separately, and the value of 2020 was predicted by the grey prediction model GM(1, 1).【Result】The ecological security values in 2000, 2005, 2010 and 2015 were 0.413, 0.382, 0.287 and 0.582, respectively. The security level deteriorated from the warning level to the vulnerable level, and returned to the warning level, showing an upward trend after the decline. From 2000 to 2005, large areas of coastal wetlands were occupied due to rapid urban expansion, coupled with increased pollution loads on wetlands, causing the ecological security value to reach the level of vulnerability. From 2005 to 2010, the region maintained rapid econom

关 键 词:杭州湾 滨海湿地 生态安全评价 DPSIR模型 熵值法 TOPSIS 灰色预测模型 

分 类 号:X8[环境科学与工程—环境工程] S718.5[农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象