大数据环境中交互式查询差分隐私保护模型  被引量:19

Interactive queries differential privacy protection model in big data environment

在线阅读下载全文

作  者:袁健[1] 王迪 申泽宇 Yuan Jian;Wang Di;Shen Zeyu(School of Optical-Electrical & Computer Engineering,University of Shanghai for Science & Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学光电信息与计算机工程学院

出  处:《计算机应用研究》2019年第6期1782-1787,共6页Application Research of Computers

基  金:国家自然科学基金资助项目(61775139)

摘  要:随着大数据时代的到来,数据挖掘技术被广泛应用,而线性查询作为该技术中最基础和最频繁的操作,其隐私保护在数据分析和数据发布隐私保护中占有极其重要的位置。交互式线性查询的交互增加了数据的处理量,运用传统的隐私保护模型效率较低。为了解决大数据环境中交互式查询差分隐私保护问题,模型针对大规模数据集中交互式线性查询差分隐私保护的特点,通过数据关联性分析减少冗余信息,采用交替方向乘子法对查询负载矩阵进行分解,利用自适应加噪技术产生差分隐私保护所需要的合理数量的噪声,设计并行处理方法实现该模型的计算。实验将提出的模型与以往模型进行对比,结果表明所提出的模型在提升隐私保护精度的同时也极大地提高了算法性能,因此模型切实可行。With the arrival of the era of big data,data mining technology is widely used,and the most basic and frequent ope- ration of the technology,linear query,whose privacy protection occupies an extremely important position in data analysis and data release privacy protection.The data processed become more when querying in an interactive linear queries way,and it is less efficient when using the traditional privacy protection models.In order to solve the problem of differential privacy protection for interactive queries in big data environment,the model reduced the redundant information through data correlation analysis,decomposed the query load matrix by adopting alternating direction multiplier method,produced a reasonable amount of noise required for differential privacy protection using the adaptive noise injection technology,and designed a parallel processing method calculated it against the characteristics of interactive linear query differential privacy protection for large-scale data set.Experiment compared the model proposed to previous works.The result shows that the proposed model promotes the accuracy of privacy protection and algorithm performance greatly.Therefore,the model is feasible.

关 键 词:线性查询 差分隐私 矩阵机制 关联性分析 交替方向乘子法 

分 类 号:TP309.2[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象