Euler-Bernoulli梁的高阶二次摄动解及收敛性讨论  被引量:2

High-Order Analytical Solutions and Convergence Discussions of the 2-Step Perturbation Method for Euler-Bernoulli Beams

在线阅读下载全文

作  者:张大光 ZHANG Daguang(School of Architectural and Surveying & Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,P.R.China)

机构地区:[1]江西理工大学建筑与测绘工程学院

出  处:《应用数学和力学》2019年第6期620-629,共10页Applied Mathematics and Mechanics

基  金:江西省教育厅科学技术研究项目(一般项目)(GJJ180458)

摘  要:首次用解析的方式给出了Euler-Bernoulli梁后屈曲与非线性弯曲问题的高阶二次摄动解答.假定梁的中线不可伸长,用精确曲率公式与能量变分原理导出了非线性Euler-Bernoulli梁的模型.通过与精确解或高阶摄动解的比较,讨论了二次摄动解答的收敛性及适用域.得到主要结论如下:低阶摄动解适用于描述梁的初始后屈曲阶段及初始非线性弯曲阶段;更高阶次的摄动解适用于描述梁的深度后屈曲以及深度非线性弯曲.从这个意义上去说,该文不仅仅指出某些文献上的部分结果不精确是由于摄动解答超出了其特定的适用域,并且还进一步发展与完善了二次摄动法.High-order analytical solutions of the 2-step perturbation method were first obtained for post-buckling and nonlinear bending of Euler-Bernoulli beams.The nonlinear model with centerline inextensibility was derived with the exact curvature expression according to the energy variational principle.Based on the comparison with the exact solutions or high-order perturbation solutions,the asymptotic property and the suitable range of 2-step perturbation solutions were also discussed.The results show that,the lower-order perturbation solutions are suitable for the initial post-buckling stage and the initial nonlinear bending stage,and the higher-order perturbation solutions are necessary for the late post-buckling stage and the highly nonlinear bending stage.Therefore,the reason why some previous perturbation solutions are inaccurate lies in the offside beyond suitable ranges,and the 2-step perturbation method is developed and improved herein.

关 键 词:二次摄动方法 高阶摄动解 后屈曲 非线性弯曲 

分 类 号:O347[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象