检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾寰 龙满生[1,2] ZENG Huan;LONG Man-sheng(School of Electronics and Information Engineering,Jinggangshan University,Ji'an 343009,China;Key Laboratory of National Bureau of Surveying and Mapping Geographic Information forWatershed Ecology and Geographic Environment Monitoring,Nanchang 330209,China)
机构地区:[1]井冈山大学电子与信息工程学院,江西吉安343009 [2]流域生态与地理环境监测国家测绘地理信息局重点实验室,江西南昌330209
出 处:《计算机工程与设计》2019年第6期1665-1670,共6页Computer Engineering and Design
基 金:国家自然科学基金项目(61462046);流域生态与地理环境监测国家测绘地理信息局重点实验室开放基金项目(WE2015002)
摘 要:为解决当前视觉显著性检测技术忽略图像的全局与局部特征的联系,使其对复杂图像的检测准确度不佳的问题,设计颜色空间转换图耦合Ripplet变换的视觉显著性检测算法。将图像转换到RGBYI空间,并计算R与G、B与Y分量的颜色差异;引入Ripplet变换,对图像进行分解,获取相应的变换系数;借助逆Ripplet变换,形成特征图;基于概率密度函数,联合特征图,计算全局显著图;利用逐像素相似度估算像素的信息熵,获取图像的局部显著图;通过组合局部与全局显著图,形成最终的显著图,完成目标检测。实验结果表明,与当前显著性检测技术相比,所提技术具有更好的检测效果,呈现出更为理想的接收机工作特性曲线。To solve the problem of poor detection effects of complex images induced by ignoring the relation between the global and local features in current visual saliency detection technique, the image visual saliency detection algorithm based on multi-feature map and Ripplet transform was proposed. The image was transformed into RGBYI space, and color difference between the R and G components as well as that between B and Y components were calculated. The image was decomposed by introducing the Ripplet transform to obtain the corresponding transform coefficients. The feature map was formed by inverse Ripplet transform. The global saliency was calculated based on the probability density function and feature map. The local saliency map of the image was obtained by using the pixelwise similarity to compute the information entropy of pixels. The final saliency region was formed by combining local and global saliency map to achieve target detection. Experimental results show that this technique has better detection results and better receiver operating characteristic curve characteristics compared with the current saliency detection technology.
关 键 词:视觉显著性检测 多特征图 Ripplet变换 RGBYI空间 全局显著性 局部显著性 逐像素相似度
分 类 号:TP390[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15