检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗震宇 于俊朋[1,2] 刘振华[1,2] LUO Zhenyu;YU Junpeng;LIU Zhenhua(Nanjing Research Institute of Electronics Technology, Nanjing 210039, China;Key Laboratory of IntelliSense Technology,CETC , Nanjing 210039,China)
机构地区:[1]南京电子技术研究所,南京210039 [2]中国电子科技集团公司智能感知技术重点实验室,南京210039
出 处:《现代雷达》2019年第5期27-32,38,共7页Modern Radar
基 金:中国博士后科学基金面上资助项目(2016M591938)
摘 要:卷积神经网络的出现使得深度学习在视觉领域取得了巨大的成功,并逐渐延伸到合成孔径雷达(SAR)图像识别领域。然而,SAR图像样本量不足,难以支撑卷积神经网络的训练需求,并且SAR图像包含大量相干斑噪声及不确定性,网络结构的设计较为困难。所以,深度学习在SAR图像识别领域的应用受到阻碍。针对上述问题,文中提出一种基于数据扩维的SAR目标识别性能提升方法,通过对原始SAR图像进行相关预处理操作并把处理后图像与原始图像结合,从而将一维的原始数据扩充成多维数据来作为训练样本。该扩维方法不仅间接扩充了样本量来支撑网络训练,同时也在网络训练前加入了“主动学习”影响,所以无需针对SAR图像特性来构建复杂卷积网络,而采用成熟、简单的网络进行训练就可以达到理想的测试精度。最后,使用MSTAR数据对该方法进行了性能验证,实验结果显示了所提方法的有效性。The emergence of convolutional neural networks has made deep learning a great success in the field of computer vision, and has been gradually extended to the field of synthetic aperture radar ( SAR) image recognition. However, the lack of sample size of SAR images makes it difficult to support the training needs of convolutional neural networks. Moreover, SAR images contain a large amount of speckle noise and uncertainty. The design of the network structure also becomes a difficulty. Therefore, deep learning is difficult to be applied in the field of SAR image recognition. Aiming at this issue, a method for improving performance of SAR target recognition based on data expansion is presented. Several SAR samples generated by image preprocessing are aggreated so that the one-dimensional data is extended to multidimensional data. It is unnecessary to construct a complex convolutional network based on the characteristics of the SAR image, and only a mature and simple network is used for training to achieve the desired test accuracy. In the end, the performance of the proposed method is validated based on the MSTAR database, and experimental results show the effectiveness of the proposed method.
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15