检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:DUAN Aiguo FU Lihua ZHANG Jianguo 段爱国;付立华;张建国(中国林业科学研究院林业研究所林木遗传育种国家重点实验室国家林业局林木培育重点实验室,北京100091;南京林业大学南方现代林业协同创新中心,南京210037;河北省塞罕坝机械林场,河北围场068466)
机构地区:[1]State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China [2]Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China [3]Saihanba Machinery Forestry Center, Weichang, Hebei 068466, China
出 处:《Journal of Resources and Ecology》2019年第3期315-323,共9页资源与生态学报(英文版)
基 金:The 12th and 13th Five-Year Plan of the National Scientific and Technological Support Projects(2015BAD09B01,2016YFD0600302);Jiangxi Scientific and Technological innovation plan(201702);National Natural Science Foundation of China(31570619,31370629)
摘 要:Data selection and methods for fitting coefficients were considered to test the self-thinning law. TheChinese fir (Cunninghamia lanceolata) in even-aged pure stands with 26 years of observation data were applied tofit Reineke's (1933) empirically derived stand density rule (No∝d^-1.605, N = numbers of stems, d= mean diameter),Yoda's (1963) self-thinning law based on Euclidian geometry (v ∝ N^-3/2, v= tree volume), and West, Brown andEnquist's (1997, 1999)(WBE) fractal geometry (w ∝ d^-8/3). OLS, RMA and SFF algorithms provided observedself-thinning exponents with the seven mortality rate intervals (2%--80%, 5%--80%, 10%- 80%, 15%--80%,20%- 80%, 25%--80% and 30%- 80%), which were tested against the exponents, and expected by the rules con-sidered. Hope for a consistent allometry law that ignores species-specific morphologic allometric and scale differ-ences faded. Exponents a of N ∝ d^α, were significantly different from -1.605 and -2, not expected by Euclidianfractal geometry;exponents β of w ∝ N^β varied around Yoda's self-thinning slope - 3/2, but was significantly differentfrom - 4/3;exponent Y of w ∝ d^γ tended to neither 8/3 nor 3.采用杉木人工同龄纯林26年连续观测数据,拟合Reineke(1933)经典的林分密度效应法则、Yoda(1963)基于欧几里德几何的自疏法则以及West, Brown和Enquist的分形几何(1997, 1999)。通过OLS、RMA和SFF算法得到7种枯损率区间(2%-80%, 5%-80%, 10%-80%, 15%-80%, 20%-80%, 25%-80%and 30%-80%)的自稀疏指数,对这些指数与考虑的几种法则相应指数进行验证。发现Reineke密度效应法则的指数显著区别于-1.605和-2,而不是预想的欧几里德分形几何结果。Yoda自疏法则指数在-3/2左右变动,但显著区别于-4/3。West、Brown和Enquist的分形几何式中指数参数既不趋向于8/3,亦不趋向于3。
关 键 词:Chinese fir SELF-THINNING stand density mortality rate
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117